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Preface

Gears and gear drives have been known and used for millennia as critical 
components of mechanisms and machines. Over the last several decades 
the development of gearing has mostly focused in the following fields: the 
improving of material, manufacturing technology and tooling, thermal 
treatment, tooth surface engineering and coatings, tribology and lubricants, 
testing technology and diagnostics. Constant demand for high-performance 
gear transmissions has resulted in significant progress in gear tooth 
microgeometry, which defines deviation from the nominal involute surface 
to achieve the optimal tooth contact localization for higher load capacity 
and lower transmission error. However, the development of gear macro-
geometry (the defining of the tooth shape and dimensional proportions) and 
gear design methods is traditionally based on the preselected instrumental 
generating rack and has remained frozen in time. The vast majority of gears 
are designed with the standard 20° pressure angle tooth proportions. For 
some demanding applications, like aerospace and automotive industries, the 
standard tooth proportions are altered to provide a higher transmission load 
capacity. Nevertheless, even for these applications the gear design methodol-
ogy has not evolved for many years.

This book introduces an alternate gear design approach called Direct Gear 
Design®. Developed over the past thirty years, it has been implemented in 
custom gear applications to maximize gear drive performance. Some seg-
ments of this book were published in technical magazines and presented at 
gear conferences. The successful implementations of this method, and the 
positive responses generated by the magazine publications and gear confer-
ence presentations, motivated me to write this book and share this knowl-
edge and experience with the gear engineering community. In this book the 
Direct Gear Design method is presented as another engineering tool that can 
be beneficial for many gear drives. I tried to avoid general conclusions and 
recommendations, realizing that in custom gearing one solution can be ben-
eficial for certain types of applications but could be completely unacceptable 
for others. For practical purposes and to facilitate the understanding of the 
Direct Gear Design method for gear engineers, I used the same established 
standard gear nomenclature and specification as much as possible.

This book is written by an engineer, for engineers to show a beneficial 
alternative to the traditional way of gear design. I hope that it will expand 
the readers’ perspective on the opportunity for further gear transmission 
improvements and inspire them to be open-minded in solving their practical 
gear design tasks.
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1
Historical Overview

1.1  Direct Gear Design® Origin

Gears were invented many centuries ago and have been widely used since 
that time [1]. Historically, the development of gear design dovetailed with the 
development and design of other mechanisms and mechanical components. 
This applied design approach could also be called direct design because a 
shape (geometry) of a part was directly defined only by its function and 
performance requirements. Ancient engineers were designing custom gears 
(Figure 1.1) for particular applications based on the knowledge of desired 
performance (input and output parameters) and available power sources, 
such as gravity, water current, wind, spring force, human or animal mus-
cular power, etc. This knowledge allowed them to define gear arrangement 
and geometry, including a number of stages, location and rotation directions 
of input and output shafts, shape and size of the gear wheels, profile and 
 number of teeth, and other parameters. Gear design also included  material 
selection, which should provide the required strength and durability of 
every component in the gear drive.

When the gear design was complete, the next stage of gear drive develop-
ment was fabrication of parts and assembly; this stage included technologi-
cal process selection and tool design. Ancient engineers were familiar with 
the two most common ways to produce gears—cutting (or carving) and form-
ing (gear die cast, for example). In some cases gear wheels and teeth (cogs 
or pegs) were made separately and then assembled. All of these technolo-
gies define the tool shape and process parameters using already known gear 
design data. Such a development sequence—design data are primary, and 
technology and tooling parameters are secondary—was typical for practi-
cally any mechanical component. It was also essential for gear drives.

Even with the earliest known use of gear mechanisms people knew that 
gear performance greatly depends on a gear tooth shape. The evolution of 
gear tooth geometry reflects a growing demand to maximize gear drive per-
formance, i.e., increase load capacity, RPM, and life; reduce vibrations and 
noise, etc. Simple rectangular or cylindrical tooth profiles were replaced 
with more sophisticated cycloid profiles. In fact, these types of gear tooth 
profiles are still used today in watch and clock mechanisms.
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1.2  Gear Design Based on Rack Generating Technology

In the mid-eighteenth century, Swiss scientist Leonard Euler introduced the 
gear tooth flank profiles formed by the circle involute curve. An important 
feature of the involute gear profiles is producing the theoretically constant 
rotational velocities’ ratio. The involute tooth profiles could be used for the 
external and internal gearings—as well as for the rack and pinion mesh. 
A gear rack is a gear wheel with an infinite number of teeth; the involute gear 
rack tooth flank profile becomes a straight line. Another important feature of 
the involute gear tooth profile is an ability of one gear to generate its mate in 
conjugate motion. In other words, if one of the mating gears presents a tool, 
such generating motion can be used for both the forming (gear rolling) and 
cutting (with the shaper cutter) gear fabrication processes. Similarly, a gear 
rack can present a cutting (or forming) edge of the tool if its linear velocity 
is aligned with the rotational velocity of the mating gear blank (Figure 1.2).

Application of a tooling rack for gear manufacturing led to the invention of 
gear hobbing machines in the nineteenth century. Their invention was moti-
vated by a huge demand for gears to be used in all kinds of mechanisms and 
machines driven by steam and, later, electric and gasoline engines during 
the industrial revolution of that same century. Coincidentally, it was also the 
beginning of industrial standardization, which greatly accelerated progress 
in gear development and manufacturing.

A basic gear rack is an impression of the tooling rack (Figure 1.3). Its size 
and proportion parameters became a subject of standardization. The main 
parameter of the basic gear rack is its scale factor; i.e., the module m (in 
 millimeters) in the metric system or the diametral pitch DP (in 1/in.) in the 
English  system. The module m is a gear rack axial pitch divided by π, or the 

FIGURE 1.1
Ancient gear drive. (Redrawn from Willis, R., Principles of Mechanism, London: John W. Parker, 
1841, p. 43.)
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gear pitch diameter divided by its number of teeth. The diametrical pitch DP 
is the number π divided by the gear rack axial pitch, or a number of gear teeth 
divided by its pitch diameter. The conversion formula for these scale factors 
is m × DP = 25.4. The basic gear rack tooth flank profile angle α is called a 
pressure angle. For the gear, a pressure angle α is at the standard pitch diam-
eter. The height of the gear tooth—from the pitch diameter to the tooth tip 
diameter—is called an addendum. An addendum—divided by a module or 
multiplied by a diametral pitch—is a dimensionless addendum coefficient. 
The height of the gear tooth—from the pitch diameter to the tooth root diam-
eter—is called a dedendum. A dedendum—divided by a module or multi-
plied by a diametral pitch—is a dimensionless dedendum coefficient. The 
difference between addendum and dedendum is a radial clearance. The sum 
of addendum and dedendum is a whole depth. A root radius of the basic 
gear rack and the radial clearance divided by a module or multiplied by a 

1

2

FIGURE 1.2
Rack gear generating: 1 - tooling (generating) rack; 2 - gear blank.

π*m or π/DP
π*m/2 or π/(2*DP)

αα

Ha

H

CBasic Rack

Tooling (Generating) Rack

r

FIGURE 1.3
Basic gear rack as impression of tooling rack. α - pressure angle; Ha - addendum; H - whole 
depth; C - radial clearance; r - root radius.
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diametral pitch are, accordingly, the dimensionless root radius and the radial 
clearance coefficients. All of these gear rack tooth parameters were standard-
ized. There is a certain set of module or diametral pitch values covering all 
gear tooth sizes—from tiny microgears for miniature drives to huge gear 
transmissions for construction and industrial machinery. Originally, stan-
dard gears had a pressure angle of 14.5° because its sinus is equal to ¼, thus 
making it convenient to calculate gears without trigonometric tables. Later, 
the 20° pressure angle became more common for standard gears because 
it provided a higher load capacity while using gears with fewer teeth and 
without a tooth root undercut. The addendum  coefficient is chosen to be 
equal to 1.0. The standard radial clearance  coefficient varies from 0.2 to 0.35. 
The standard root radius coefficient is about 0.3 for coarse pitch gears with 
the module m ≥ 1.0 or the diametral pitch DP ≤ 20. For the fine pitch gears 
(m < 1.0 or DP > 20) the root radius is not typically specified. These standard 
gear tooth sizes and proportion coefficients describe simultaneously basic 
and tooling (generating) rack geometry and complete the gear profile for the 
given number of teeth.

Before the invention of the gear generating method and beginning of 
the standardization of the basic gear rack parameters, definition of tooling 
parameters belonged to the processing and tooling design stage, i.e., when 
the gear design was already completed. Now the standard basic gear rack 
parameters are established and the tooling rack (as an impression of the 
basic rack) also becomes standard. The parameters of these racks became the 
input parameters for gear design. This made gear design indirect, depending 
on preselected, standard parameters of the basic or tooling rack. From this 
point forward, the development of gear geometry and design takes a detour 
from mainstream development of mechanical components.

This rack generation-based gear design has yielded many benefits. First, 
gear design was drastically simplified in that a given number of gear teeth 
and a chosen standard tool virtually defined the gearing geometry and mesh 
parameters. Stress analysis (gear rating), defining tooth bending strength 
and tooth surface durability, was also simplified. The predefined form and 
application coefficients, gear load (torque) and RPM, and the gear geome-
try parameters defined the bending and contact stress values. This design 
approach also provided gear interchangeability in that the same gears could 
be used for different mechanisms and machines. Practically all of those 
mechanisms and machines were designed to run with standard gears. 
Another benefit is that a single tool could fabricate gears with different 
number teeth and these standard gears could work together. This allowed a 
reduction in tooling inventory.

It was perhaps no accident that the prominent gear scientist Prof. F.L. Litvin 
titled one of his books Development of Gear Technology and Theory of Gearing 
[2], putting technology ahead of the theory of gearing. In fact, many modern 
gear analysis studies and design procedures are based on preselected, often 
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standard, basic gear rack parameters. With this approach gear design begins 
with the selection or definition of the basic rack parameters.

When a basic rack is chosen the gear designer has only one parameter—the 
addendum modification or X-shift [3]—which can be used to change the gear 
tooth geometry. The X-shift is a dimensionless factor; it equals the distance 
between the generating rack pitch line and the standard gear pitch diameter, 
divided by a module in the metric system or multiplied by a diametral pitch 
in the English system. In essence, the X-shift defines the tool position relative 
to the gear blank during the final cut; it indicates how far the tool is plunged 
into the blank. Gear tooth profiles with different addendum modifications 
are shown in Figure 1.4.

When the X-shift is zero (i.e., the addendum is not modified), the pitch line 
of the generating rack is tangent to the gear pitch diameter and the gear has 
standard geometry. If the X-shift is less than zero (negative addendum modi-
fication), the gear’s outer and root diameters, and the circular tooth thick-
ness at the pitch diameter, are reduced. At the same time, the tooth tip land 
becomes larger and the load capacity of the gear—with a negative addendum 
modification—is reduced. For gears with a low number of teeth, this may 
lead to undercut of the involute profile, resulting in a contact ratio reduction 
and an additional reduction in tooth strength. If the X-shift is greater than 
zero (positive addendum modification), the gear’s outer and root diameters, 
and the circular tooth thickness at the pitch diameter, are enlarged. At the 
same time, the tooth tip land becomes smaller. At a certain value of the posi-
tive X-shift for a gear with a low number of teeth, the tooth has a pointed 
tooth tip, which is typically unacceptable; load capacity of the gear with a 
positive addendum modification is increased.

If the X-shift sum of the mating gear pair is equal to zero, the operating 
pressure angle is the same as the profile angle of the tooling (generating) 
rack, and the center distance is the same as for the standard gears with zero 
X-shifts. This kind of an addendum modification allows a balance (or equal-
ization) of the bending strength of mating gears, or equalizing of the maxi-
mum specific sliding velocities of the contacting flanks, thus increasing gear 
mesh efficiency. The positive sum of the X-shifts of mating gears increases 

X = 0 X = +0.5

X = –0.5

FIGURE 1.4
Gear tooth profiles with different addendum modifications (X-shifts).
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operating pressure angle and center distance as compared to a standard gear 
pair. As a result, the bending and contact (Hertzian) stresses are reduced and 
tooth flank wear resistance and gear train lifetime are increased. However, 
the contact ratio becomes lower. The negative sum of the X-shifts of mating 
gears reduces the operating pressure angle and center distance, and increases 
the contact ratio (unless the undercut occurs) and the bending and contact 
(Hertzian) stresses. Application of addendum modifications also allows a fit-
ting of mating gears to the given center distance—if it is close to, yet different 
from, the standard one.

The selection of addendum modifications for the mating gear pair is 
limited by the so-called blocking contour [4]. The blocking contour is con-
structed for a certain, preselected generating rack and given numbers of 
teeth for mating pinion and gear. Every point of this contour (Figure  1.5) 
defines a mating gear pair with certain addendum modifications or X-shifts 
in which X1 is for the pinion and X2 for the gear. It also contains a number 
of isograms, presenting a certain tooth geometry or gear mesh conditions. 
The vertical 1 and horizontal 2 lines show the tooth root undercut conditions 
for pinion and gear, accordingly. Isograms 3 and 4 indicate the beginning 
of the tip/root interference near the tooth root of the pinion and the gear. 
Isogram 5 presents the gear pairs with the minimum allowable transverse 

X2

2.0

1.5

1.0

0.5

–0.5

–1.0

11

A

X1
1.51.00.5

3

7

8

5
6

12

49

10
B

2

1

FIGURE 1.5
Blocking contour of gear pair.



7Historical Overview

© 2008 Taylor & Francis Group, LLC

contact ratio; for spur gears it is 1.0. Practical limitation of the spur gear 
transverse contact ratio to 1.1, for example, as shown by isogram 6; gear pairs 
with a pointed tooth tip of the pinion are described by isogram 7. Practical 
limitation of the pinion tooth tip land (isogram 8) must be larger than zero, 
e.g., 0.2.m or 0.2/DP. The blocking contour may contain many other isograms 
describing different gear pair properties. For instance, isogram 9 shows 
gear pairs with equalized bending stresses for both mating gears (the face 
widths are also considered equal). The maximum mesh efficiency (isogram 
10) presents gears with equalized, maximum specific sliding velocities that 
provide maximum gear mesh efficiency. The gear pair located in point A of 
the blocking contour has a minimum operating pressure angle (isogram 11) 
and a maximum contact ratio. The gear pair located in point B of the block-
ing contour has a maximum operating pressure angle (isogram 12) and a 
minimum contact ratio for spur gears of 1.0. Some of the blocking contour 
border conditions—such as the tip/root interference and the pointed tooth 
tip isograms—cannot be violated. However, the undercut condition may be 
acceptable for some (not highly loaded) gear applications if it does not reduce 
the transverse contact ratio below the permissible level. In some cases helical 
gears can have the transverse contact ratio below 1.0 by compensating for it 
with sufficient axial (or face) contact ratio.

This traditional gear design based on the standard basic rack provides sat-
isfactory, universal solutions for the majority of gear applications. However, 
it is well known that universal solutions do not always work well for custom 
application and optimized design is required for performance maximiza-
tion. A search for these optimized solutions led to a creation of different, 
nonstandard custom generating gear racks. Some of these racks actually 
became standard for different industries, like, for example, the 22.5° pres-
sure angle rack that is commonly used in the automotive industry. The 25°, 
and even the 28°, pressure angle racks, and the 20° pressure angle rack with 
increased addendum (for high transverse contact ratio) are used in aerospace 
gear transmissions [5]. Other custom generating racks are also used for gear 
design in order to meet specific application requirements.

The traditional, rack-based gear design has existed for more than 150 years, 
and its contribution to industrial progress cannot be underestimated. But 
it becomes clear that, at its core, a rack generating approach imposes its 
own natural limits on gear performance improvements. And yet, despite a 
 tremendous amount of innovation and development in science, technology, 
and machinery during the last few decades, it is still commonly used 
today by gear researchers and engineers. Modern trends for product cus-
tomization are driven by technical and market performance maximization 
requirements. This leaves practically no place for universal standard gears. 
Gears have become more and more custom—and not interchangeable—for 
 different applications. Also, low gear tooling inventory is no longer a prior-
ity;  critical application gears are made using specifically dedicated cutting, 
forming, holding, and other tools.
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Of course generating rack machining and forming technologies are not 
alone in the manufacture of gears. Many gears are fabricated by form cut-
ting and grinding, broaching, powder metal processing, injection molding, 
precision forging and die casting, etc.—all made without gear generating 
rack tools. Nevertheless, the gears produced by these methods are designed 
by the traditional generating rack-based method.

The new reality of gear development and use diminishes virtually all of 
the benefits of traditional, indirect gear design. Mathematical modeling, 
finite element analysis (FEA), and computer-aided design (CAD) software 
open new boundaries in developing the optimized gear macrogeometry for 
custom transmissions. This technology can get custom gear design back on 
track—from that previously mentioned detour taken in the mid-nineteenth 
century—to join the mainstream direct design of other mechanical 
 components (Figure 1.6).

1.3  Gear Design without Rack Generation

Modern Direct Gear Design is based on the theory of generalized param-
eters created by Prof. E.B. Vulgakov [6–8] that separates gear geometry from 

Direct Design of Mechanical Components
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First Involute Gears
Involute Curve Discovery

Antikythera Gear Computer

Primordial Direct Gear Design
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3000-
1000 b.c.

Prehistoric Gears

First Planetary Gears
250 b.c.

Rack Generating Gear Design

Rack Generation Process
Gear Standardization

�eory of Generalized Parameters
2000

1900

Modern Direct Gear Design

FIGURE 1.6
Evolution of Direct Gear Design.
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fabrication technology and tooling parameters. In this theory he has demon-
strated how an involute gear tooth, a gear, and a gear mesh could be defined, 
analyzed, and optimized without using the basic or generating rack. He 
defined the gear mesh parameter limits and introduced so-called areas of 
existence of the gear pair. An area of existence for a particular gear pair is 
a significantly greater blocking contour of the same gear pair created for a 
generating rack. In fact, an area of existence covers gear pairs that could be 
generated by any possible rack (Figure 1.7), including cases when the mating 
gears are generated by different racks.

Indeed, Professor Vulgakov’s theory liberated gear development and 
design from limitations imposed by a preselected, standard (or custom) gen-
erating rack. It significantly expanded the range of possible gear and mesh 
parameters and returned gear geometry development to its rightful promi-
nence along with other mechanical components designs.

R.E. Kleiss of Kleiss Gears has independently developed his own approach 
to design of plastic gears without the use of basic or generating rack param-
eters [9, 10]. With his method, “a basic generating rack is not used to define 
root and tooth geometry. Here the mating gear in close mesh defines these 
geometries and produces a gear in its maximum material condition. The 
tip of one gear forms the root of the other.” This allowed the use of invo-
lute tooth shapes and proportions—which are not achievable by standard 
rack generation—for improving the performance of plastic gears. He also 

6
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FIGURE 1.7
Area of existence of gear pair. ν1 and ν2 - pinion and gear involute intersection profile angles; 
1 - pinion root interference isogram; 2 - gear root interference isogram; 3 - isogram of trans-
verse contact ratio equal to 1.0; 4–6 - blocking contour borders of standard 20° and 25°, and 
custom 28° generating racks constructed in ν1-ν2 coordinates.
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developed his own approach to plastic gear specification, where the base 
circle diameter is used, rather than the traditional reliance upon module or 
diametral pitch  [11]. The tooth thickness is also defined at the base circle 
diameter—not at the pitch circle diameter.

1.4  Gears with Asymmetric Teeth

Flanks of a gear tooth are functionally different for many gear drives. Tooth 
load on one flank is significantly higher and is applied for longer periods of 
time than for the opposite one. An asymmetric tooth shape reflects this func-
tional difference (Figure 1.8). A design objective of asymmetric gear teeth 
is to improve the performance of primary drive profiles at the expense of 
the performance of opposite coast profiles. The coast flanks are unloaded 
or lightly loaded during a relatively short work period. Asymmetric tooth 
profiles make it possible to simultaneously increase the contact ratio and 
operating pressure angle beyond those limits achievable with conventional 
symmetric gears. The main advantage of asymmetric gears is contact stress 
reduction on the drive flanks that results in higher power transmission 
 density (load capacity per gear size). Another important advantage is the 
possibility of designing the coast tooth flanks independently from the drive 
tooth flanks, i.e., managing tooth stiffness while keeping a desirable pres-
sure angle and contact ratio of drive flanks. This allows an increase in tooth 
tip deflection, thus damping tooth mesh impact and resulting in a reduction 
of gear noise and vibration.

While they have been known for many years, the history of gears with 
asymmetric teeth (or asymmetric gears) is not sufficiently recorded in 
 modern gear literature. The first asymmetric gears had a buttress tooth 

FIGURE 1.8
Gears with asymmetric teeth.
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shape with low-pressure angle at the drive tooth flanks, and with support-
ing coast flanks with high-pressure angle. According to Darle W. Dudley [1], 
“By 100 BC the gear art included both metal and wooden gears. Triangular 
teeth, buttress teeth, and pin-teeth were all in use.” R.S. Woodbury wrote [12]: 
“In Leonardo da Vinci we find some drawings of tooth form—one very like a 
buttress tooth.” R. Willis [13] had shown the asymmetric buttress gear teeth 
(Figure 1.9) with the following explanation: “If a machine be of such a nature 
that the wheels are only required to turn in one direction, the strength of 
the teeth may be doubled by an alteration of form.” He chose the epicycloid 
profile for the drive tooth flanks and the involute one for the coast flanks.

Later, F. Reuleaux elaborated upon asymmetric tooth shape proportions. 
He also used the epicycloid drive tooth flanks and the involute coast flanks 
with the 53° pressure angle. In his book [14] these tooth profiles are called the 
thumb-shaped teeth (Figure 1.10), and he wrote, “By combining evolute and 
epicycloids—using the two curves for opposite sides of the same tooth—a 
profile of great strength is obtained. This form is of especial service for 
heavy-duty driving when motion is constantly in the same direction.”

O.A. Leutwiler [16] applies involute profiles for both drive and coast flanks 
of the buttress or, as he called them, hook-tooth gears (Figure  1.11). He 
suggested the 15° pressure angle for drive flanks and the 35° pressure angle 
for coast flanks.

Much of the research [17–24] has defined asymmetric gear geometry tra-
ditionally by the preselected asymmetric generating gear rack parameters 
(Figure 1.12), which is typically modified from the standard symmetric rack 
by increasing the pressure angle of one flank. The opposite flank and other 
rack tooth proportions remain unchanged. There are no standards on gears 
with asymmetric teeth. They are for custom high-performance gear trans-
missions, and the modified asymmetric tooling gear racks cannot satisfy 
demanding applications and requirements of such gear drives.

a
e

g f

b

c

FIGURE 1.9
Asymmetric gear mesh. (Redrawn from Willis, R., Principles of Mechanism, London: John W. 
Parker, 1841, p. 138.)
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FIGURE 1.10
The Reuleaux’s thumb-shaped tooth gears. (a) Mesh schematics. (Redrawn from Reuleaux, F., 
The Constructor. A Hand-Book of Machine Design, Philadelphia: H.H. Suplee, 1894, p. 134.) (b) Gear 
model from Reuleaux Collection of Kinematic Mechanisms of Cornell University. (From Jon Reis 
Photography, Q05 thumb shaped gear teeth profiles, Cornell University Library, http://kmoddl.
library.cornell.edu/model_metadata.php?m=111. Copyright © Jon Reis. With permission.)
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Authors of earlier and some modern publications about asymmetric 
gear geometry chose the buttress tooth form that has drive flanks with 
low-pressure angle and the coast supporting flanks with high-pressure angle, 
because it provides noticeable bending stress reduction in comparison with 
the standard symmetric tooth form. The high-contact-ratio (HCR)  buttress 
tooth form was considered for noise and vibration reduction in aerospace 
gear transmissions [25, 26]. However, an increased stiffness of buttress teeth 
prevented the desired goal.

It is well known that gear transmission load capacity and power density 
depend mainly upon the tooth flank surface durability, which is defined by 
the contact stress level and scuffing resistance. From this point, the applica-
tion of a higher-pressure angle for drive tooth flanks and a lower-pressure 
angle for coast tooth flanks is more promising. In addition, this tooth form 
provides lower stiffness and better gear mesh impact dampening.

Prof. E.B. Vulgakov applied his theory of generalized parameters to 
asymmetric gears [7, 27], defining their geometry without using rack gen-
eration parameters. According to his approach, an asymmetric tooth is con-
structed with two halves of the symmetric teeth with different base circles 
(Figure 1.13). In order to achieve the maximum operating pressure angle and 
contact ratio, the drive tooth flank uses one-half of the symmetric tooth, with 
pointed tip and smaller base circle. Necessary tooth tip land is provided 
by the coast flank that is one-half of the other symmetric tooth, but with a 
greater base circle and large tooth tip land.

The maximum transverse contact ratio and pressure angle of such asym-
metric gears are the same as for symmetric gears with pointed tooth tips. 
This limitation does not allow for realization of all asymmetric tooth per-
formance improvement potentials, and this design approach did not find a 
practical application.

35° Involute 15° Involute

FIGURE 1.11
Buttress or hook-tooth gear. (Redrawn from Leutwiler, O.A., Element of Machine Design, London: 
McGraw-Hill Book Company, 1917, p. 134.)
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Publications [28–31] suggested an asymmetric tooth formed with two 
involutes of two different base circles. Figure  1.14 shows that the sym-
metric tooth with identical drive pressure angle and tooth thicknesses at 
the reference and tip diameters has a much shorter active involute flank 
than the drive flank of an asymmetric tooth. This simultaneously enables 
a high-pressure angle and contact ratio in the asymmetric gear mesh. Such 
an approach addresses all possible asymmetric tooth profiles—from a 
virtually  symmetric tooth shape to a tooth shape with very high  asymmetry. 
Asymmetric gear geometry development and design specifics are described 
in the  following chapters.

2

3

1

FIGURE 1.12
Asymmetric gear rack generation: 1 - standard symmetric generating rack; 2 - modified asym-
metric generating rack profile; 3 - gear profile.

1 2

da

Sa

Sref dref

dbc

dbd

FIGURE 1.13
Asymmetric tooth constructed with two halves of the symmetric teeth: 1 - drive flank from 
base diameter dbd; 2 - coast flank from base diameter dbc; Sref - tooth thickness at reference 
 diameter dref; Sa - thickness at tooth tip diameter da.
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1
2

3

4da

Sa

Sref dref

dbc

dbd

FIGURE 1.14
Asymmetric tooth constructed with two involutes: 1, drive flank from base diameter dbd; 2 - coast 
flank from base diameter dbc; 3 - root fillet; 4 - symmetric tooth profile with the same drive flank, 
and tooth thicknesses Sref and Sa at the reference diameter dref and the tooth tip diameter da.
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2
Macrogeometry of Involute Gears

Flanks of involute gears typically have deviations from a theoretical involute 
surface. These deviations are partially a result of technological imperfections. 
However, in many cases, a designer modifies tooth flanks to compensate pos-
sible gear teeth dislocations related to an assembly misalignment and operat-
ing conditions (thermal expansion, deflections under the load, etc.). A goal of 
involute flank modification is to provide tooth contact localization (also known 
as profile and lead crowning), which is a subject of gear microgeometry devel-
opment [32–34]. Microgeometry of gear flanks is not considered in this book.

The subject of this chapter is a gear macrogeometry—analysis of the gear 
meshes with true involute profiles. Practically all equations, except those in 
Sections 2.2.3 and 2.4, are related to the spur gears or the transverse section 
of the helical gears.

2.1  Involute Tooth Parameters

An involute curve (or involute) can be presented as a trajectory of the end of 
a string unwrapped from a base diameter db.

2.1.1  Symmetric Gear Teeth

Two involutes unwrapped in opposite (clockwise and counterclockwise) 
directions are used to form tooth flanks (Figure 2.1). An angle αx is the invo-
lute profile angle at some tooth flank point X. Involute function inv αx = tan 
αx – αx (where αx is in radians) presents the angle between radial lines from 
the center O to the start point of the involute and to point X. An angle ν is the 
involute profile angle at intersection of the tooth flank involutes.

The base tooth thickness of the external tooth is

 S d invb b= × ( )ν . (2.1)

The base tooth thickness of the internal tooth is

 S d z invb b= −( / ( ))π ν , (2.2)
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FIGURE 2.1
Involute flanks of external (a) and internal (b) gear teeth.
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where z is a number of teeth. If inv(ν) ≥ π/z, the base tooth thickness of the 
internal gear tooth is equal to zero or negative.

A diameter at the tooth flank point X is

 d dx b x= /cos α . (2.3)

An involute profile curvature radius at point X is

 ρ α
x

b xd= tan
2

. (2.4)

A tooth thickness at the diameter dx is:

For external gear tooth:

 S d inv invx x x= −( ( ) ( ))ν α  (2.5)

or

 S d inv invx b x x= −( ( ) ( ))/cosν α α . (2.6)

For internal gear tooth:

 S d z inv invx x x= − +( / ( ) ( ))π ν α  (2.7)

or

 S d z inv invx b x x= − +( / ( ) ( ))/cosπ ν α α . (2.8)

A tooth profile must also include the tip land and tip radii or chamfers to 
exclude the sharp pointed tooth, and the fillet between teeth (see Figures 2.2 
and 2.3). A root fillet of the tooth is not in contact with the mating gear tooth. 
However, it is an important part of the tooth profile because this is an area of 
the maximum bending stress, which may limit performance and life of a gear 
drive. The fillet design and optimization are presented in Section 5.3.

The tooth tip diameter da can be defined by Equation (2.3):

 d da b a= /cos α , (2.9)

where αa is the profile angle at the diameter da. This diameter is also called 
the outer diameter for the external gears and the minor diameter for the 
internal gears.
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The virtual tooth tip land Sa of an external gear tooth (Figure 2.2) is defined 
by Equation (2.5) considering tip radius equal to zero:

 S d inv inva a a= −( ( ) ( ))ν α . (2.10)

The virtual tooth tip land Sa of the internal gear tooth (Figure 2.3) is defined 
from Equation (2.7):

 S d z inv inva a a= − +( / ( ) ( ))π ν α . (2.11)

αf

dr

df db

da

Sa
Ra Sar

π////

ν
αa

αe

FIGURE 2.2
External gear tooth.

αa
αe
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ν

π/Zπ/Z
dr

df

dd

Sar

Sa
Ra

da

FIGURE 2.3
Internal gear tooth.
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The profile angle αe is an effective involute angle at the tooth tip. It is defined 
considering the tooth tip radius Ra as

 αe
b

a a

a

b

d
d R

R
d

= ±arctan(tan(arccos( )) )
∓ 2

2
, (2.12)

where signs ∓ and ± are for external gears and internal gears, respectively.
The tooth tip land Sar is defined considering the tip radius Ra:

For an external gear tooth:

 S d inv R dar a e e a b= − + −( ( ) tan arctan(tan / ))ν α α 2 . (2.13)

For an internal gear tooth:

 S d
z

inv
R
d

ar a e e
a

b
= − + − +( ( ) tan arctan(tan ))

2 2π ν α α . (2.14)

Direct Gear Design® defines the form diameter df and related profile 
angle αf considering a mesh with the mating gear (see Section 2.2). The 
root diameter dr is defined as a result of the fillet profile optimization (see 
Section 5.3).

A gear rack (Figure 2.4) can be considered a gear with an infinite number 
of teeth. This alters an involute curve to the straight line with a constant 
profile angle α. The nominal pitch line equally splits the rack pitch for the 
tooth thickness and space between teeth. The rack nominal effective tooth 
addendum Hae is defined from the nominal pitch line. In the rack and pinion 

1

HHe

Hae

πm or π/DP

πm/2 or π/(2DP)

α α

Sar

Sa

Ra

Ha

FIGURE 2.4
Gear rack tooth. 1 - nominal pitch line; α - rack profile angle; m - rack module (metric system); 
DP - rack diametral pitch (English system); Ha - nominal tooth addendum; Hae - nominal  effective 
tooth addendum; He - effective tooth profile depth; H - whole tooth depth.
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mesh the operating pitch line can be different than the nominal pitch line. 
This makes the operating pitch line tooth thickness and tooth addendum 
also different from the nominal ones.

The tooth tip land Sar of the rack tooth is:

In the metric system:

 S
m

H Rar ae a= − −π α α
2

2 2tan cos . (2.15)

In the English system:

 S
DP

H Rar ae a= − −π α α
2

2 2tan cos . (2.16)

The nominal gear rack tooth addendum Ha is

 H H Ra ae a= + −( sin )1 α . (2.17)

The virtual tooth tip land Sa of the gear rack tooth is:

In the metric system:

 S
m

Ha a= −π α
2

2 tan , or (2.18)

in the English system

 S
DP

Ha a= −π α
2

2 tan . (2.19)

2.1.2  Asymmetric Gear Teeth

Application of asymmetric teeth allows improving performance of gear 
drives, which transmit more load by one tooth flank in comparison to the 
opposite flank. This type of tooth macrogeometry is practically disregarded 
by traditional gear design that is based on a standard gear rack with symmet-
ric teeth. Direct Gear Design is naturally suitable for gears with asymmetric 
teeth because standards for traditional design for such gears do not exist.

Two involute flanks of the asymmetric tooth (see Figure 2.5) are unwound 
from two different base diameters dbd and dbc. The symbol d is used for 
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FIGURE 2.5
Involute flanks of external (a) and internal (b) asymmetric gear teeth.
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drive flank and the symbol c is used for coast flank of an asymmetric tooth. 
A diameter dx at the drive flank point X can be defined from (2.3):

 d d dx bd xd bc xc= =/cos /cosα α . (2.20)

Then the tooth asymmetry factor K is

 K d dbc bd xc xd= =/ cos /cosα α . (2.21)

For many applications the drive flank profile angle αxd is greater than the 
coast flank profile angle αxc. This means dbd < dbc and the asymmetry factor 
K > 1.0. For symmetric tooth K = 1.0.

At the coast flank base circle dbc the coast flank profile angle αxc = 0 and the 
drive flank profile angle αxd from (2.21) is

 αxd K= arccos( / )1 . (2.22)

The base tooth thickness of the asymmetric tooth can be defined only at 
the coast flank base circle dbc:

For external tooth:

 S
d

inv inv invb
bc

d c K= × + −
2

1( ( ) ( ) (arccos( ))/ν ν . (2.23)

For internal tooth:

 S
d

z inv inv inv Kb
bc

d c= × − − +
2

2 1( / ( ) ( ) (arccos( / ))π ν ν . (2.24)

The tooth thickness at diameter dx is:

For external tooth:

 S
d

inv inv inv invx
x

d c xd xc= × + − −
2

( ( ) ( ) ( ) ( ))ν ν α α  (2.25)

or

 S
d

inv inv inv invx
bd

xd
d c xd xc= × + − −

2 cos
( ( ) ( ) ( ) (

α
ν ν α α ))) . (2.26)
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For internal tooth:

 S
d

z
inv inv inv invx

x
d c xd xc= × − − + +

2
2

( ( ) ( ) ( ) ( ))
π ν ν α α  (2.27)

or

 S
d

z
inv inv inv invx

bd

xd
d c xd= × − − + +

2
2

cos
( ( ) ( ) ( )

α
π ν ν α (( ))αxc . (2.28)

The same as in a symmetric tooth, an asymmetric tooth profile must include 
the tip land and tip radii, and the root fillet between teeth (see Figures 2.6 
to 2.8). The tooth tip diameter da can be defined from (2.9):

 d d da bd ad bc ac= =/cos /cosα α , (2.29)

where αad and αac are the drive and coast profile angles at the diameter da.
The virtual tooth tip land Sa of the external gear tooth is defined  considering 

tooth tip radii equal to zero from Equation (2.25) or (2.26):

For external tooth (Figure 2.6):

 S
d

inv inv inv inva
a

d c ad ac= × + − −
2

( ( ) ( ) ( ) ( ))ν ν α α  (2.30)

αfd
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ν c

2π/Z 2π/Z
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dfddfc
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FIGURE 2.6
External asymmetric gear tooth.
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or

 S
d

inv inv inv inva
bd

ad
d c ad ac= × + − −

2 cos
( ( ) ( ) ( ) (

α
ν ν α α ))) . (2.31)

For internal tooth (Figure 2.7):

 S
d

z inv inv inv inva
a

d c ad ac= × − − + +
2

2( / ( ) ( ) ( ) ( ))π ν ν α α  (2.32)

or

 S
d

z inv inv inv ina
bd

ad
d c ad= × − − + +

2
2

cos
( / ( ) ( ) ( )

α
π ν ν α vv ac( ))α . (2.33)

The profile angles αed and αec are the effective involute angles at the tooth 
tip. They are defined considering the tooth tip radii Rad and Rac for external 
gears as:

For drive flanks:

 αed
bd

a ad

ad

bd

d
d R

R
d

= ±arctan(tan(arccos( )) )
∓ 2

2
. (2.34)
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FIGURE 2.7
Internal asymmetric gear tooth.
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For coast flanks:

 αec
bc

a ac

ac

bc

d
d R

R
d

= ±arctan(tan(arccos( )) )
∓ 2

2
. (2.35)

In Equations (2.33) and (2.34) signs ∓  and ± are the external gears and  internal 
gears, respectively.

The tooth tip land Sar of an external gear tooth is defined considering the 
tip radii Rad and Rac:

S
d

inv invar
a

d c ed ec= × + − − +
2

( ( ) ( ) tan tan arctan(tν ν α α aan )

arctan(tan )).

α

α

ed
ad

bd

ec
ac

bc

R
d

R
d

−

+ −

2

2
 (2.36)

The tooth tip land Sar of the internal gear tooth is

 

S
d

z
inv invar

a
d c ed ec= × − − + +

−

2
2

( ( ) ( ) tan tan

arct

π ν ν α α

aan(tan ) arctan(tan )).α αed
ad

bd
ec

ac

bc

R
d

R
d

+ − +2 2
 (2.37)

The form diameters dfd and dfc, and related profile angles αfd and αfc, are 
defined considering a mesh with the mating gear (see Section 2.2). The 
root diameter dr is defined as a result of the fillet profile optimization (see 
Section 5.3).

The asymmetric gear rack tooth is shown in Figure 2.8. The tooth tip land 
Sar of the rack tooth is:

In the metric system:

 S
m

H R H Rar aed d ad d aec c ac c= − − − −π α α α α
2

tan cos tan cos , or (2.38)

in the English system:

 S
DP

H R H Rar aed d ad d aec c ac c= − − − −π α α α α
2

tan cos tan cos . (2.39)

The nominal gear rack tooth addendum Ha is

 H H R H Ra aed ad d aec ac c= + − = + −( sin ) ( sin )1 1α α . (2.40)
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The virtual tooth tip land Sa of the gear rack tooth is

In the metric system:

 S
m

Ha a d c= − +π α α
2

(tan tan ) , or (2.41)

in the English system:

 S
DP

Ha a d c= − +π α α
2

(tan tan ) . (2.42)

2.2  Gear Mesh Characteristics

In this chapter the gear geometry is presented assuming the gear tooth 
tip radii and the mesh backlash equal to zero. The effect of the tooth tip 
radii and backlash on the gear mesh is considered in the tolerance  analysis 
(see Chapter 7).

2.2.1  Symmetric Gearing

In traditional gear design the module m in the metric system (or diametral 
pitch DP in the English system) is a scale factor defining gear tooth size. 

1

Haed
Hed

Haec
Hec

H

πm/2 or π/(2DP)

αcαd

πm or π/DP

Sar

Sa

Rad

Rac

Ha

FIGURE 2.8
Asymmetric gear rack tooth: 1 - nominal pitch line; αd and αc - rack profile angles; Ha - nominal 
tooth addendum; Haed and Haec - nominal effective tooth addendums; Hed and Hec - nominal 
effective tooth profile depths; H - whole tooth depth.
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Prof. E.B. Vulgakov [8] proposed to use the gear base circle diameter as a scale 
 factor. R.E. Kleiss also suggested this for the AGMA standard  appendix [10]. 
In Direct Gear Design the nominal operating module mw in the metric sys-
tem (or nominal operating diametral pitch DPw in the English system) is 
used as a gear tooth scale factor to make it easy to understand for engineers 
who are familiar with the traditional gear design. This also allows defining 
the nominal operating gear mesh center distance:

 a
m z z

w
w= ±( )2 1

2
 or a

z z
DPw

w
= ±2 1

2
, (2.43)

where + is for external gear mesh and – is for internal gear mesh, and indexes 1 
and 2 are related to parameters of the pinion with number of teeth z1 and of 
the gear with number of teeth z2, accordingly. The pinion typically (but not 
necessarily) has fewer teeth than the gear and is the driving component of 
the gear pair.

The nominal operating pitch diameters of mating gears are

 d m zw w1 2 1 2, ,=  or d
z
DP

w
w

1 2
1 2

,
,= . (2.44)

2.2.1.1  Pressure Angle

The external, internal, and rack and pinion gear meshes are shown in 
Figure 2.9.

The operating circular pitch pw is

 p
d

z
d

z
w

w b

w
= × = ×

×
π π

α
1 2

1 2

1 2

1 2

,

,

,

, cos
. (2.45)

It can be presented in the metric system:

 p mw w= π , (2.46)

or in the English system:

 p
DPw

w
= π

. (2.47)

It is also

 p S Sw w w= +1 2 . (2.48)
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S a1
aw

αw

db1

αa1 αp1

αp2

dw2

pb

εα . pb

db2

da2αa2

dw1

S w1

da1

S w2 S a2

(a)

da1

dw2

da2

db1

αp2

pb

αp1
αa1

db2

εα . pb

αw
αa2

aw

S
a1

S
w1

Sw2

Sa2

dw1

(b)

FIGURE 2.9
Symmetric gear mesh: (a) external, (b) internal, (c) rack and pinion.
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The pinion tooth thicknesses at the nominal operating pitch diameter Sw1 

are defined from (2.6) as

 S
d

inv invw
b

w
w1

1
1= −

cos
( ( ) ( ))

α
ν α . (2.49)

The mating gear tooth thickness Sw2 is:

For external gear mesh:

 S
d

inv invw
b

w
w2

2
2= −

cos
( ( ) ( ))

α
ν α , or (2.50)

for internal gear mesh from (2.8):

 S
d

z
inv invw

b

w
w2

2

2
2= − +

cos
( ( ) ( ))

α
π ν α . (2.51)

For rack and pinion mesh the operating module is equal to the rack  module 
mw = m in the metric system, or the operating diametral pitch is equal to the 
rack diametral pitch DPw = DP in the English system. The mating gear rack 
tooth thickness at the operating pitch line Sw2 is

Hw

αw

αa1

db1

αp1

pb

εα  . pb

da1

dw1

Haw

Sw2

pw

αα

Sa2

S w1

S a1

(c)

FIGURE 2.9 (continued)
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 S m Sw w2 1= −π  or S
DP

Sw w2 1= −π
. (2.52)

Considering Equation (2.49), it is:

In the metric system:

 S m
d

inv invw
b

w
w2

1
1= − −π

α
ν α

cos
( ( ) ( )) , or (2.53)

in the English system:

 S
DP

d
inv invw

b

w
w2

1
1= − −π

α
ν α

cos
( ( ) ( )) . (2.54)

The rack tooth operating addendum is

 H
S S

aw
w a= −2 2

2 tan α
. (2.55)

The nominal operating pressure angle αw is defined by substitution of Sw1 

and Sw2 from Equations (2.49) and (2.50) or (2.51) into (2.48) with (2.45):

For external gear mesh [8]:

 inv
u

inv u inv
z

w( ) ( ( ) ( ) )α ν ν π=
+

+ × −1
1

1 2
1

, or (2.56)

for internal gear mesh:

 inv
u

u inv invw( ) ( ( ) ( ))α ν ν=
−

× −1
1

2 1 , (2.57)

where u = z2/z1, the gear ratio.
In the rack and pinion mesh the nominal operating pressure angle αw is 

equal to the pack profile angle α:

 α αw = . (2.58)

2.2.1.2  Tip/Root Interference

The profile angles at the lowest points of contact near the fillet (see 
Figure 2.9) are:
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For external gear mesh:

 α α αp w au u1 21= + −arctan(( ) tan tan ) , (2.59)

 α α αp w a
u

u u
2 1

1 1= + −arctan( tan tan ) . (2.60)

For internal gear mesh:

 α α αp a wu u1 2 1= − −arctan( tan ( ) tan ) , (2.61)

 α α αp w a
u

u u
2 1

1 1= − +arctan( tan tan ) . (2.62)

For rack and pinion mesh:

 α α
αp

aw

b

H
d

1
1

2= −arctan(tan
sin

) , (2.63)

 α αp2 = . (2.64)

The rack tooth operating depth is

 H
d

w
b

a p= −1
1 1

2
sin

(tan tan )
α α α . (2.65)

If the profile angle αp1 or αp2 in the external mesh or angle αp1 in the internal 
and rack and pinion meshes is less than zero, then its involute flanks close to 
the base diameters are interfering with the mating tooth tips. This leads to 
the involute profile undercut. This type of undercut is different than in the 
traditional gear design where the gear involute profile near to the tooth root 
is undercut by the cutter tooth tip.

In an external mesh the pinion profile angle αu1 at the undercut point is 
defined (Figure 2.10) by the equation system

 

sin( ( ) ( ))
cos

( )
sin
cos co

inv inv
u

uw u

u w

α α
α

φ
α

− = + −1

1

11
ss

sin( ( )

( ) ( ))

α
φ

α α

a

a w

u

inv inv

2
1

2

1
1+

− +

 

(2.66)

 

cos( ( ) ( ))
cos

( )
cos
cos co

inv inv
u

uw u

u w

α α
α

φ
α

− = + −1

1

11
ss

cos( ( )

( ) ( )).

α
φ

α α

a

a w

u

inv inv

2
1

2

1
1+

− +
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db1

dw1

da2

dw2

db2

αwaw
da1

P

(a)

αu1

2

1 φ1

aw

(b)

FIGURE 2.10
Definition of the undercut profile angle αu1 in external mesh: (a) initial tooth mesh position—
gear teeth in contact at the pitch point P; (b) undercut position. 1 - undercut profile point; 
2 - trajectory  of the mating gear tooth tip.
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Similarly, in the case of the gear profile undercut, the angle αu2 is defined 
by the system

 

u inv inv
uw u

u w

sin( ( ) ( ))
cos

( )
sin
cos

si

α α
α

φ
α

− = +

−

2

2

21

nn( ( ) ( ) ( ))
cos

φ α α
α

2 1

1

1 + − +u inv inva w

a

 

(2.67)

 

u inv inv
uw u

u w

cos( ( ) ( ))
cos

( )
cos
cos

co

α α
α

φ
α

− = +

−

2

2

21

ss( ( ) ( ) ( ))
cos

.
φ α α

α
2 1

1

1 + − +u inv inva w

a

In an internal mesh the pinion profile angle αu1 at the undercut point is 
defined (Figure 2.11) by the system

 

sin( ( ) ( ))
cos cos

sin( ( )
inv inv u

u
w u

u a

α α
α α

φ− = −1

1 2
1 1

1 −− +

− −

inv inv

u

a w

w

( ) ( ))

( )
sin
cos

,

α α

φ
α

2

11

 

(2.68)

 

cos( ( ) ( ))
cos cos

cos( ( )
inv inv u

u
w u

u a

α α
α α

φ− = −1

1 2
1 1

1 −− +

− −

inv inv

u

a w

w

( ) ( ))

( )
cos
cos

.

α α

φ
α

2

11

For the gear with internal teeth αp2 is always greater than zero, and this 
kind of interference with undercut near the gear tooth fillet is impossible.

For a rack and pinion mesh the pinion profile angle αu1 at the undercut 
point is defined (Figure 2.12) by the equation system

 
d

H
d

inv invb
a

b

u

1 1 1

1
1

2 2
φ

α
α

α
φ α α

cos
tan

cos
sin( ( ) (− = − − uu1))  (2.69)

 
d

H
d

inv invb
a

b

u
u

1 1

1
1 1

2 2cos cos
cos( ( ) ( ))

α α
φ α α− = − − .

The rack teeth do not have this kind of interference with undercut near the 
fillet, because αp2 = α ≥ 0.
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If the undercut occurs, the lowest contact point coincides with the under-
cut point and the profile angles αp1,2 become equal to profile angles at the 
undercut point αu1,2.

2.2.1.3  Tip/Tip Interference in Internal Gearing

There is another kind of interference, which is typical for internal gearing. 
At certain gear geometry parameter combinations tips of the mating gears 
may interfere (Figure 2.13).

The interference condition is

 ∆ = − ≥λ λ1 2 0u , (2.70)

where

 λ γ α α1 2 1 2 1 2, , ,( ) ( )= + −inv inva w , (2.71)

αw

P

aw

da1

dw2

db1

db2

dw1

da1

(a)

1

φ1

aw

αu1

2

(b)

FIGURE 2.11
Definition of the undercut profile angle αu1 in internal mesh: (a) initial tooth mesh position—
gear teeth in contact at the pitch point P; (b) undercut position. 1 - undercut profile point; 
2 - trajectory  of the mating gear tooth tip.
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 γ π1

1
2

2 2
2

1

4 4= −
+ −

arccos( )

d
a

d

d a

a
w

a

a w
, (2.72)

 γ2

2
2

2 1
2

2

4 4=
+ −

arccos( )

d
a

d

d a

a
w

a

a w
. (2.73)

α

α α

P

Ha

db1

dw1

(a)

φ1

Ha

dw1
db1

α

2

αu1

1

α

(b)

FIGURE 2.12
Definition of the undercut profile angle αu1 in rack and pinion mesh: (a) initial tooth mesh posi-
tion—rack and pinion teeth in contact at the pitch point P; (b) undercut position. 1 - undercut 
profile point; 2 - trajectory of the mating rack tooth tip.
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This kind of interference is more typical for internal gears with a low 
tooth number difference z2 – z1 and low operating pressure angle αw. It can 
be avoided by increasing the pressure angle and reducing the tooth height.

2.2.1.4  Transverse Contact Ratio

The transverse contact ratio is defined as the contact line length (the dashed 
line in Figure 2.9) divided by the base pitch pb, that is,

 p
d
z

d
z

pb
b b

w w= = =π π α1

1

2

2
cos . (2.74)

Then the transverse contact ratio is [8]:

For external gear mesh:

 ε
π

α α αα = + − +z
u ua a w

1
1 2

2
1(tan tan ( ) tan ) . (2.75)

For internal gear mesh:

 ε
π

α α αα = − + −z
u ua a w

1
1 2

2
1(tan tan ( ) tan ) . (2.76)

For rack and pinion mesh:

 ε
π

α α
αα = − +z H

db
a

aw1
1

12
2

(tan tan
sin

) . (2.77)

da1

da2

γ2

dw1dw2

1
aw

γ1

FIGURE 2.13
Tip/tip interference in the internal mesh: 1 - the interference point.
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Alternatively, the contact ratio can be defined:

For external gear mesh with Equations (2.59) and (2.60):

 ε
π

α α αα = + − −z
u uw p p

1
1 2

2
1(( ) tan tan tan ) . (2.78)

For internal gear mesh with Equations (2.61) and (2.62):

 ε
π

α α αα = − − −z
u up p w

1
2 1

2
1( tan tan ( ) tan ) . (2.79)

For rack and pinion mesh with Equation (2.63):

 ε
π

α α
αα = − + −z H H

db
p

w aw1
1

12
2

(tan tan
( )

sin
) , (2.80)

where Hw is the effective rack tooth depth.
Common solution of Equations (2.75) and (2.60) or (2.61), (2.76) and (2.62) or 

(2.63) allows presenting formulas for the transverse contact ratio as

 ε
π

α αα = −z
a p

1
1 1

2
(tan tan ) , (2.81)

 ε
π

α αα = ±z
a p

2
2 2

2
( tan tan )∓ , (2.82)

where the symbols ± and ∓ are the external gears and internal gears, respectively.
For a rack and pinion mesh the transverse contact ratio can be also defined 

by solving Equations (2.64), (2.77), and (2.80):

 εα α α
= =H

p
H

p
w

b

w

wsin sin
2

2
. (2.83)

Then the rack and pinion mesh transverse contact ratio is:

In the metric system:

 εα π α
= 2

2
H

m
w

w sin
. (2.84)

In the English system:

 εα π α
= ×2

2
DP Hw

sin
. (2.85)
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2.2.2  Asymmetric Gearing

Asymmetric external, internal, and rack and pinion gear meshes are shown 
in Figure 2.14.

In all figures and equations describing gears with asymmetric teeth 
indexes, d and c are for parameters related to the drive and coast tooth 
flanks, accordingly.

2.2.2.1  Pressure Angles

The pinion and gear tooth thicknesses Sw1 and Sw2 at the operating pitch 
diameters dw1,2 are defined by Equations (2.26) and (2.28) as

 S
d

inv inv inv invw
bd

wd
d c wd1

1
1 1

2
= + − −

cos
( ( ) ( ) ( ) (

α
ν ν α ααwc )) . (2.86)

For external gearing:

 S
d

inv inv inv invw
bd

wd
d c wd2

2
2 2

2
= + − −

cos
( ( ) ( ) ( ) (

α
ν ν α ααwc )) . (2.87)

For internal gearing:

 S
d

z
inv inv invw

bd

wd
d c wd2

2

2
2 2

2
2= − − +

cos
( ( ) ( ) ( )

α
π ν ν α ++ inv wc( ))α . (2.88)

The mating gear rack tooth thickness at the operating pitch line Sw2 is 
from (2.52):

For the metric system:

 S m
d

inv inv inv invw
bd

d
d c d2

1
1 1

2
= − + − −π

α
ν ν α

cos
( ( ) ( ) ( ) (( ))αc . (2.89)

For the English system:

 S
DP

d
inv inv inv inw

bd

d
d c d2

1
1 1

2
= − + − −π

α
ν ν α

cos
( ( ) ( ) ( ) vv c( ))α . (2.90)

The operating pressure angle for the drive flanks αwd and the coast flanks 
αwc is defined by substitution of Sw1 and Sw2 from Equations (2.86) and (2.87) 
or (2.88) into (2.48).
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For external gear:

inv inv
u

inv inv u invwd wc d c( ) ( ) ( ( ) ( ) ( (α α ν ν+ =
+

+ +1

1
1 1 νν ν π

d cinv
z

2 2
1

2
) ( )) )+ − . (2.91)

For internal gear:

inv inv
u

u inv inv invwd wc d c( ) ( ) ( ( ( ) ( ))α α ν ν+ =
−

+ −1

1
2 2 (( ) ( ))ν νd cinv1 1− . (2.92)

The relation between pressure angles for the drive flanks αwd and pressure 
angles for the coast flanks αwc is defined from (2.21) as

 cos cosα αwc wdK= . (2.93)

In the rack and pinion mesh the operating pressure angles αwd and αwc are 
equal to the pack profile angles αd and αc:

 α αwd d=  and α αwc c= . (2.94)

2.2.2.2  Interference for Asymmetric Gears

The profile angles at the lowest points of contact near the fillet are:

For external gear mesh, drive flanks:

 α α αpd wd adu u1 21= + −arctan(( ) tan tan ) , (2.95)

 α α αpd wd ad
u

u u
2 1

1 1= + −arctan( tan tan ) . (2.96)

For external gear mesh, coast flanks:

 α α αpc wc acu u1 21= + −arctan(( ) tan tan ) , (2.97)

 α α αpc wc ac
u

u u
2 1

1 1= + −arctan( tan tan ) . (2.98)

For internal gear mesh, drive flanks:

 α α αpd ad wdu u1 2 1= − −arctan( tan ( ) tan ) , (2.99)
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Sw2

dbc1

da2

S w1

S a1
εαd  . pbd

αad2

αac2

αwd

dw1

dw2

εαc . pbc

pbc

dbc2

αac1

α wc

pbd

αad1

dbd2

dbd1

Sa2da1

(a)

pbd

αwd

pbc

εαc . pbc

dw2 da1

dbc2

dbc1

dbd1
αad2

αac2 dbd2

αac1

αad1

α wc

εαd  . pbd

dw1

S
w1

Sw2

S
a1

Sa2

da2

(b)

FIGURE 2.14
Asymmetric gear mesh: (a) external, (b) internal, (c) rack and pinion.
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 α α αpd wd ad
u

u u
2 1

1 1= − +arctan( tan tan ) . (2.100)

For internal gear mesh, coast flanks:

 α α αpc ac wcu u1 2 1= − −arctan( tan ( ) tan ) , (2.101)

 α α αpc wc ac
u

u u
2 1

1 1= − +arctan( tan tan ) . (2.102)

For rack and pinion mesh, drive flanks:

 α α
αpd d

a

bd d

H
d

1
1

2= −arctan(tan
sin

) , (2.103)

 α αpd d2 = . (2.104)

For rack and pinion mesh, coast flanks:

 α α
αpc c

a

bc c

H
d

1
1

2= −arctan(tan
sin

) , (2.105)

Sw2

Sa2

Sa1

αac1

pw

Sw1

αad1

αpd

αd

dbc1

αc

pbd

εαd  . pbd

εαc . pbc

da1

pbc

dbd1

dw1

αwd

α wc

α pc

Hwd
Haw

Hwc

(c)

FIGURE 2.14 (continued)
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 α αpc c2 = . (2.106)

The rack tooth operating depths are

 H
d

wd
bd d

ad pd= −1
1 1

2
sin

(tan tan )
α α α , (2.107)

 H
d

wc
bc c

ac pc= −1
1 1

2
sin

(tan tan )
α α α . (2.108)

If asymmetry factor K > 0, interference occurs first for the coast involute 
flanks. If the profile angle αpc1 or αpc2 in the external mesh or angle αpc1 in the 
internal and rack and  pinion meshes is less than zero, then its involute flanks 
close to the base  diameters are interfering with the mating tooth tips. This 
leads to the  involute profile undercut.

Tooth profile tip/root and tip/tip interference conditions in the  asymmetric 
gearing are exactly the same as in the symmetric one (see Sections 2.2.1.2 and 
2.2.1.3). All interference equations of the symmetric gearing are applicable 
for the asymmetric one.

2.2.2.3  Transverse Contact Ratio for Asymmetric Gears

The transverse contact ratios for asymmetric gears are defined exactly the 
same way as for the symmetric gears (Equations (2.75) to (2.80)), but sepa-
rately for the drive and coast tooth flanks:

For external gear mesh, drive flanks:

 ε
π

α α ααd ad ad wd
z

u u= + − +1
1 2

2
1(tan tan ( ) tan ) . (2.109)

For external gear mesh, coast flanks:

 ε
π

α α ααc ac ac wc
z

u u= + − +1
1 2

2
1(tan tan ( ) tan ) . (2.110)

For internal gear mesh, drive flanks:

 ε
π

α α ααd ad ad wd
z

u u= − + −1
1 2

2
1(tan tan ( ) tan ) . (2.111)
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For internal gear mesh, coast flanks:

 ε
π

α α ααc ac ac wc
z

u u= − + −1
1 2

2
1(tan tan ( ) tan ) . (2.112)

For rack and pinion mesh, drive flanks:

 ε
π

α α
ααd ad d

a

bd d

z H
d

= − +1
1

12
2

(tan tan
sin

) . (2.113)

For rack and pinion mesh, coast flanks:

 ε
π

α α
ααc ac c

a

bc c

z H
d

= − +1
1

12
2

(tan tan
sin

) . (2.114)

Alternatively, the contact ratios for external asymmetric gear meshes can 
be defined with Equations (2.95) to (2.98):

For drive flanks:

 ε
π

α α ααd wd pd pd
z

u u= + − −1
1 2

2
1(( ) tan tan tan ) . (2.115)

For coast flanks:

 ε
π

α α ααc wc pc pc
z

u u= + − −1
1 2

2
1(( ) tan tan tan ) . (2.116)

The contact ratios for internal asymmetric gear meshes are defined with 
Equations (2.99) to (2.102):

For drive flanks:

 ε
π

α α ααd pd pd wd
z

u u= − − −1
2 1

2
1( tan tan ( ) tan ) . (2.117)

For coast flanks:

 ε
π

α α ααc pc pc wc
z

u u= − − −1
2 1

2
1( tan tan ( ) tan ) . (2.118)
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The rack and pinion mesh contact ratios are defined with Equations (2.103) 
and (2.105):

For drive flanks:

 ε
π

α α
ααd d pd

wd aw

bd d

z H H
d

= − + −1
1

12
2

(tan tan
( )

sin
) . (2.119)

For coast flanks:

 ε
π

α α
ααc c pc

wc aw

bc c

z H H
d

= − + −1
1

12
2

(tan tan
( )

sin
) , (2.120)

where Hwd and Hwc are effective rack tooth depths.
Similar to gears with symmetric teeth the transverse contact ratios of gears 

with asymmetric teeth can be presented using parameters for only one of the 
mating gears:

For drive flanks:

 ε
π

α ααd ad pd
z= −1

1 1
2

(tan tan ) , (2.121)

 ε
π

α ααd ad pd
z= ±2

2 2
2

( tan tan )∓ . (2.122)

For coast flanks:

 ε
π

α ααc ac pc
z= −1

1 1
2

(tan tan ) , (2.123)

 ε
π

α ααc ac pc
z= ±2

2 2
2

( tan tan )∓ , (2.124)

where the symbols ± and ∓ are the external gears and internal gears, respectively.
For a rack and pinion mesh the transverse contact ratios can be also defined 

the same way:

For drive flanks:

 εα α αd
H

p
H

p
wd

bd d

wd

w d
= =

sin sin
2

2
. (2.125)
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For coast flanks:

 εα α αc
H

p
H

p
wc

bc c

wc

w c
= =

sin sin
2

2
. (2.126)

In the metric system they are defined as:

For drive flanks:

 εα π αd
H

m
wd

w d
= 2

2sin
. (2.127)

For coast flanks:

 εα π αc
H

m
wc

w c
= 2

2sin
. (2.128)

In the English system they are:

For drive flanks:

 εα π αd
DP Hwd

d
= ×2

2sin
. (2.129)

For coast flanks:

 εα π αc
DP Hwc

c
= ×2

2sin
. (2.130)

2.2.3  Contact Ratio for Helical Gears

Spur gear mesh has only a transverse contact ratio εα. For helical gears there 
is also axial (or face) contact ratio εβ that in addition to the transverse contact 
ratio εα results with the total gear ratio εγ, which is

 ε ε εγ α β= + . (2.131)

The axial contact ratio εβ is defined by the angular shift φ of the helical gear 
sections (see Figure 2.15), which is [35, 36]

 φ = =2 2AC
d

AB
db b

 (2.132)
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or

 φ β= 2b
p

w

b
btan , (2.133)

where AC is arc shift of helical gear sections, AB is shift of helical gear sec-
tions projected on the contact plane tangent to the base cylinder at point A, 
bw is contact face width, a distance between helical gear sections in contact, 
and βb is helix angle at the base cylinder.

For two mating gears,

 φ φ1 2= ×u . (2.134)

Axial contact ratio εβ is defined by Equations (2.74), (2.132), (2.133), and (2.134):

 εβ π
φ

π
φ β= = = =AB

p
z z b

pb

w

b
b

1
1

2
2

2 2
tan . (2.135)

For asymmetric gears the axial contact ratio is identical for the drive and 
coast flanks because according to Equation (2.21),

 p p
d
d

p Kbc bd
bc

bd
bd= = ×  (2.136)

β
b

bw

A

C

B

3

φ

db

1
2

FIGURE 2.15
Angular shift φ of the helical gear sections: 1 - base cylinder; 2 - helical involute surface; 3 - con-
tact plane tangent to the base cylinder. (From Kapelevich, A.L., et al., Direct Gear Design for 
spur and helical gears, Gear Technology, September/October 2002, 29–35. With permission.)



49Macrogeometry of Involute Gears

© 2008 Taylor & Francis Group, LLC

and

 tan tan tanβ β βbc bd
bc

bd
bd

d
d

K= = × . (2.137)

This allows presenting Equation (2.135) for asymmetric gears as

 ε ε εβ β β β β= = = =d c
b
p

b
p

w

bd
bd

w

bc
bctan tan . (2.138)

2.3  Pitch Factor Analysis

This section presents an alternative method of involute gear geometry param-
eters and mesh definition, which is called the pitch factor analysis [28, 29].

The gear mesh operating circular pitch (from Equation (2.45)) is

 p
d

z
S S Sw

w
w w bl= × = + +π 1 2

1 2
1 2

,

,
, (2.139)

where Sw1 and Sw2 are the pinion and gear tooth thicknesses at the operating 
pitch diameter, and Sbl is the arc backlash.

The tooth thicknesses Sw1 and Sw2 are (see Figures 2.16 and 2.17)

For symmetric gears:

 S S Sw v1 2 1 2 1 22, , ,= + . (2.140)

For asymmetric gears:

 S S S Sw d c v1 2 1 2 1 2 1 2, , , ,= + + , (2.141)

where

 S
d

inv invd
w

ed wd1 2
1 2

1 2
2

,
,

,( ( ) ( ))= ± α α∓  (2.142)

are projections of the addendum portion of the drive involute flank on the 
pitch circle,
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 S
d

inv invc
w

ec wc1 2
1 2

1 2
2

,
,

,( ( ) ( ))= ± α α∓  (2.143)

are projections of the addendum portion of the coast involute flank on the 
pitch circle, the symbols ∓ and ± are the external gears and internal gears, 
respectively, and Sv1,2 are the pitch circle projections of the tip land and radii.
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Pw

Sv2

(c)

FIGURE 2.16
Symmetric gear mesh and operating pitch components: (a) external, (b) internal, (c) rack 
and pinion.
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For rack and pinion gear mesh Sd2, Sc2, and Sv2 are the pitch line projections. 
In this case a projection of the addendum portion of the drive flank on the 
pitch line is

 S Hd aed d2 = tan α . (2.144)

A projection of the addendum portion of the coast flank on the pitch line is

 S Hc aec c2 = tan α . (2.145)
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FIGURE 2.17
Asymmetric gear mesh and operating pitch components: (a) external, (b) internal, (c) rack 
and pinion.
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Then the gear mesh operating circular pitch from (2.139) is

 p S S S S S S Sw d d c c v v bl= + + + + + +1 2 1 2 1 2 . (2.146)

A pitch factor equation is a result of division of Equation (2.146) by operat-
ing circular pitch pw:

 θ θ θd c v+ + = 1 , (2.147)

where θd is the coast pitch factor that is defined as

 θd
d d

w

S S
p

= +1 2 , (2.148)

θc is the drive pitch factor that is defined as

 θc
c c

w

S S
p

= +1 2 , (2.149)

and θv is the noncontact pitch factor that is defined as

 θv
v v bl

w

S S S
p

= + +1 2 . (2.150)

The drive pitch factor is:

For external gear mesh:

 θ
π

α α αd ed ed wd
z

inv uinv u inv= + − +1
1 2

2
1( ( ) ( ) ( ) ( )) . (2.151)

For internal gear mesh:

 θ
π

α α αd ed ed wd
z

inv uinv u inv= − + −1
1 2

2
1( ( ) ( ) ( ) ( )) . (2.152)

The coast pitch factor is:

For external gear mesh:

 θ
π

α α αc ec ec wc
z

inv uinv u inv= − + −1
1 2

2
1( ( ) ( ) ( ) ( )) . (2.153)
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For internal gear mesh:

 θ
π

α α αc ec ec wc
z

inv uinv u inv= + − +1
1 2

2
1( ( ) ( ) ( ) ( )) . (2.154)

For rack and pinion gear mesh the drive and coast pitch factors are

 θ
π

α α αd ed d
aed

w
d

z
inv inv

H
p

= − +1
1

2
( ( ) ( )) tan  (2.155)

and

 θ
π

α α αc ec c
aec

w
c

z
inv inv

H
p

= − +1
1

2
( ( ) ( )) tan . (2.156)

The drive and coast pressure angles are defined by equations:

For external gear mesh:

 inv
u

inv uinv
z

wd ed ed
d( ) ( ( ) ( ) )α α α πθ=

+
+ −1

1
2

1 2
1

, (2.157)

 inv
u

inv uinv
z

wc ec ec
c( ) ( ( ) ( ) )α α α πθ=

+
+ −1

1
2

1 2
1

. (2.158)

For internal gear mesh:

 inv
u z

inv uinvwd
d

ed ed( ) ( ( ) ( ))α πθ α α=
−

− +1
1

2

1
1 2 , (2.159)

 inv
u z

inv uinvwc
c

ec ec( ) ( ( ) ( ))α πθ α α=
−

− +1
1

2

1
1 2 . (2.160)

For rack and pinion gear mesh:

 α αwd d=  (2.161)

and

 α αwc c= . (2.162)
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For gears with symmetric teeth the angles αe1,2 = αed1,2 = αec1,2 and αw = αwd = αwc. 
Then the pitch factor θ = θd = θc, that is:

For external gear mesh:

 θ
π

α α α= + − +z
inv uinv u inve e w

1
1 2

2
1( ( ) ( ) ( ) ( )) . (2.163)

For internal gear mesh:

 θ
π

α α α= − + −z
inv uinv u inve e w

1
1 2

2
1( ( ) ( ) ( ) ( )) . (2.164)

For rack and pinion gear mesh:

 θ
π

α α α= − +z
inv inv

H
p

ed
ae

w

1

2
( ( ) ( )) tan . (2.165)

The pressure angle is defined by the following equations:

For external gear mesh:

 inv
u

inv uinv
z

w e e( ) ( ( ) ( ) )α α α πθ=
+

+ −1
1

2
1 2

1
. (2.166)

For internal gear mesh:

 inv
u z

inv uinvw e e( ) ( ( ) ( ))α πθ α α=
−

− +1
1

2

1
1 2 . (2.167)

For rack and pinion gear mesh:

 α αw = . (2.168)

For gears with symmetric teeth the pitch factor θ from Equation (2.131) is

 θ θ θ θ= = = × −d c v
1
2

1( ) . (2.169)

This equation shows that for symmetric gears the pitch factor θ always ≤ 0.5. 
For the standard 20° pressure angle gears θ = 0.25–0.30, and for the 25° pres-
sure angle gears θ = 0.30–0.35. In custom symmetric gears the pitch θ can 
reach values of 0.40–0.45.

For gears with asymmetric teeth the drive pitch factor θd from Equation 
(2.147) is

 θ θ θd c v= − −1 . (2.170)
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Reduction of the coast pitch factor θc and the noncontact pitch factor θv 
allows a significant increase in the drive pitch factor θd. Figure  2.18 pres-
ents a sample of the drive pressure angle vs. the drive contact ratio αwd − εαd 
chart at a different value of θd for a gear couple with the pinion number of 
teeth z1 = 21 and the gear number of teeth z2 = 37. The chart shows that the 
symmetric gear solutions lie below the curve θd = 0.5 and the asymmetric 
gears are located below and above this curve. A simultaneous increase in 
the drive pressure angle and the drive contact ratio maximizes gear drive 
performance. It allows reducing the contact and bending stress, increas-
ing load capacity and power transmission density. This indicates potential 
advantages of the asymmetric gears over the symmetric ones for gear drives 
that transmit load mostly in one direction.

The pitch factor analysis is the additional Direct Gear Design analytical 
tool that can be used for comparison of different gear geometry solutions, 
helping the designer better understand available options and choose the 
 optimal one.

2.4  Application of Direct Gear Design for 
Different Types of Involute Gears

In the previous sections the Direct Gear Design approach was described 
for spur gears. However, it is applicable to any other type of involute gears: 
helical, bevel, worm, face gears, etc. Tooth macrogeometry of these gears is 

αwd

1.0

50°

40°

30°

20°

Symmetric and Asymmetric Gears

Asymmetric Gears

θd = 0.5 
0.4

2.01.6 1.81.41.2
εαd

0.7
0.6

0.3

FIGURE 2.18
A sample of the αwd − εαd chart with different values of the drive pitch factor θd for a gear couple 
with the pinion number of teeth z1 = 21 and the gear number of teeth z2 = 37.
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typically defined in a normal plane to the tooth line. This normal plane tooth 
profile can be considered a tooth profile of the virtual spur gear. Formulas 
for calculating number of teeth of virtual spur gears that have a tooth profile 
that is identical to the normal plane tooth profile of different types of invo-
lute types of gears are shown in Table 2.1. Virtual numbers of teeth are usu-
ally real numbers with the decimal parts. The tooth geometry of virtual spur 
gears is optimized by means of Direct Gear Design. Then the optimized tooth 
profiles are considered the normal section tooth profiles of the actual gears.
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TABLE 2.1

Virtual Spur Gear Conversion

Type of Gear
Number of Teeth of 
Virtual Spur Gears

Spur Z Zv1 2 1 2, ,=

Helical Z
Z

v1 2
1 2

3,
,

cos( )
=

β

Crossed helical Z
Z

v1 2
1 2

1 2
3,

,

,cos( )
=

β

Straight tooth bevel Z
Z

v1 2
1 2

1 2
,

,

,cos( )
=

γ

Spiral and skewed bevel Z
Z

v1 2
1 2

1 2
3,

,

,cos( )cos( )
=

γ β

continued
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TABLE 2.1 (continued)

Virtual Spur Gear Conversion

Type of Gear
Number of Teeth of 
Virtual Spur Gears

Hypoid Z
Z

v1 2
1 2

1 2 1 2
3,

,

, ,cos( )cos( )
=

γ β

Worm

With involute worm:

Z Zwv w= sin( )β 3

Z Zwgv wg= cos( )β 3

With Archimedes’ worm:

Zwv = ∞

Z Zwgv wg=

Face spur
Z Zv1 1=

Z v2 = ∞

Face helical

Z
Z

v1
1

3=
cos( )β

Z v2 = ∞

Note: Z1,2 - number of teeth of the real pinion and gear, Z1,2v - number of teeth 
of virtual spur pinion and gear, Zw and Zwg - number of starts of real 
worm and number of teeth of real worm gear, Zwv and Zwgv - number  of 
teeth of virtual spur gears that replace real worm and worm gear, 
β or β1,2 - helix angle of helical or worm gears and spiral angle of spiral 
bevel gears, γ1,2 - pitch angle of bevel gears.
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3
Area of Existence of Involute Gears

In traditional gear design the preselected basic or generating rack param eters 
and addendum modification or X-shift factor define the nominal involute 
gear geometry. X-shift factor selection for the given pair of gears is limited by 
the block contour (Figure 1.5). Borders of the block contour include the under-
cut isograms, the interference isograms, the minimum contact ratio (equal to 
1.0 for spur gears) isogram, and the isograms of the minimum tooth tip thick-
ness to exclude the gears with the pointed tooth tips. If a block contour of 
some generating rack does not contain an optimal gear geometry for a partic-
ular gear application, the generating rack parameters (pressure angle, adden-
dum, whole depth proportions, etc.) should be changed. Then the altered rack 
block contour may include the desired optimal gear geometry.

Direct Gear Design® does not use basic or generating rack parameters to 
define the gear geometry. However, gear pair mesh geometry selection is 
also limited by an area of existence. This area defines parameter limits for 
a pair of spur gears. It is also used for any kind of involute gears, by their 
conversion to the virtual spur gears (see Section 2.4). In this chapter areas of 
existence are defined and analyzed considering the gear tooth tip radii, mesh 
backlash, and all tolerances equal to zero.

3.1  Area of Existence of Symmetric Gears

Prof. E.B. Vulgakov introduced areas of existence of involute gears in his 
theory of generalized parameters [7]. He suggested using the profile angles 
ν1,2 at the intersection point of the tooth flank involutes as coordinates for an 
area of existence of two mating gears with number of teeth z1 and z2. Other 
gear tooth parameters also can be used as coordinates for an area of exis-
tence, for example, the tooth tip profile angles αa1,2 or the relative base tooth 
thicknesses mb1,2 that are,

 m
S
d

inv vb
b

b
1 2

1 2

1 2
1 2,

,

,
,( )= = , (3.1)

where Sb1,2 are base tooth thicknesses of the mating gears.
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In this book the profile angles ν1,2 at the intersection point of the tooth flank 
involutes are used as coordinates for area of existence.

Unlike traditional design block contours, where the tooth thicknesses at 
the tip diameters vary depending on the X-shifts, the area of existence is 
constructed for selected constant relative tooth tip thicknesses ma1,2. Prof. 
Vulgakov defined the relative tooth tip thickness as a ratio of the tip diameter 
tooth thicknesses to the base circle diameter [7]:

 m
S
d

a
a

b
1 2

1 2

1 2
,

,

,
= . (3.2)

However, it is more practical to present the relative tooth tip thicknesses as 
ratios in relation to the operating module mw or the operating diametral pitch 
DPw, because mw or DPw is commonly used to define a range of  desirable 
 values for the tooth tip thickness. Then ma1,2 can be described as

 m
S
m

a
a

w
1 2

1 2
,

,=  or m S DPa a w1 2 1 2, ,= × . (3.3)

For gears with external teeth the relative tooth tip thickness ma1,2 is

 m
z

inv inva
w

a
a1 2

1 2

1 2
1 2 1 2,

,

,
, ,

cos
cos

( ( ) ( ))= −α
α

ν α . (3.4)

For gears with internal teeth the relative tooth tip thickness ma2 is

 m
z

z
inv inva

w

a
a2

2

2 2
2 2= − +cos

cos
( ( ) ( ))

α
α

π ν α . (3.5)

For a gear rack tooth the relative nominal tooth addendum ha is a nominal 
pitch tooth addendum divided by the rack module m in the metric system,

 h
H
m

a
a= , (3.6)

or multiplied by the rack diametral pitch DP in the English system,

 h H DPa a= × . (3.7)

The gear rack tooth relative tooth tip thickness ma2 is

 m ha a2
2

2= −π αtan . (3.8)
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The gear rack relative operating tooth addendum haw is an operating tooth 
addendum divided by the rack module m in the metric system,

 h
H
m

aw
aw=  (3.9)

or multiplied by the rack diametral pitch DP in the English system,

 h H DPaw aw= × . (3.10)

Accordingly, the relative operating tooth depth in the metric system is

 h
H
m

w
w= , (3.11)

and in the English system it is

 h H DPw w= × . (3.12)

An area of existence contains a number of isograms, which present the 
certain constant value of gear mesh parameters or the certain constant mesh 
condition. The next sections describe construction of these isograms for the 
following gear pair parameters selected as examples:

Pinion number of teeth z1 = 18

Mating gear (external or internal) number of teeth z2 = 25

Mating gear rack number of teeth z2 = ∞

Pinion relative tooth tip thickness ma1 = 0.25

Mating gear or rack relative tooth tip thickness ma1 = 0.35

3.1.1  Pressure Angle Isograms

Equations (2.56), (2.57), and (2.58) define the pressure angle αw = const iso-
grams (Figure 3.1). These isograms do not depend on the relative tooth tip 
thicknesses ma1,2.

The pressure angle isograms are bordered by isograms of the tooth tip 
profile angles αa1 = 0° and αa2 = 0° that are defined from Equations (2.56) 
and (3.4) for the external gears, and (2.57) and (3.5) for the internal gears. In 
the rack and pinion mesh the rack intersection point profile angle ν2 = αw = α. 
Then an equation of the isogram αa1 = 0° is defined from (3.4) as

 inv
ma

z
( )

cos
ν

ν1
1

1 2
=

×
. (3.13)



62 Direct Gear Design

© 2008 Taylor & Francis Group, LLC

80604020

80°

70°

50°

60°

αa1 = 0° 
80

ν1°

ν2°

60

20°

αw = 0°
20

40

αa2 = 0°

30°
40°

(a)

20

40

60

80

60 8020 40

60°

70°

20°30°

80°

40°

50° 10°

αa1 = 0° 

ν2°
αw = 0°

αa2 = 0°

ν1°

(b)

FIGURE 3.1
Pressure angle αw = const isograms: (a) for external gears, (b) for internal gears, (c) for rack 
and pinion.
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The theoretical limits of the pressure angle are 0° < αw < 90°. The practical 
range of the pressure angle varies depending on the type of involute gears and 
their application. For example, some worm gears with the metal worm and 
polymer gear have very low (5° to 12°) pressure angle. The most common range 
is 14.5° to 25°. The highly stressed aerospace gears may have pressure angles 
of 25° to 30°. Spur gears with asymmetric teeth can have pressure angles up 
to 45° and higher. Helical gears have both transverse and axial contact ratios 
(see Section 2.2.3). This allows realizing a significantly higher transverse pres-
sure angle level. For example, the self-locking helical gears (Section 6.3) can 
have transverse operating pressure angles up to 80° and higher.

3.1.2  Transverse Contact Ratio Isograms

The transverse contact ratio εα = const isograms for the external gearing are 
shown in Figure 3.2a. They are described by the system of Equations (3.4) and

 

( ) (arctan( (tan tan )))1
1

1
2

1 2
1

+ ×
+

+ × −u inv
u

u
z

a aα α πεα

−− − × + =inv u inv
z

( ) ( ) ,ν ν π
1 2

1
0  (3.14)
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FIGURE 3.1 (continued)
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FIGURE 3.2
Transverse contact ratio εα = const isograms: (a) for external gears, (b) for internal gears, (c) for 
rack and pinion.
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which is a result of the combined solution of Equations (2.56) and (2.75).
The εα = const isograms for internal gearing (Figure 3.2b) are described by 

the system of Equations (3.4), (3.5), and

 

( ) (arctan( ( tan tan )))u inv
u

u
z

a a− ×
−

× − +1
1

1
2

2 1
1

α α πεα

−− × + =u inv inv( ) ( ) ,ν ν2 1 0
 

(3.15)

which is a result of the combined solution of Equations (2.57) and (2.76).
For a gear rack ν2 = α the εα = const isograms for the rack and pinion 

gearing (Figure 3.2c) are described by the solution of Equations (3.4), (3.8), 
and (3.9):

 tan tan
sin

α ν πε
ν

α
a

aw

z
h

z
1 2

1 1 2

2 4
0− − − = . (3.16)

Spur gears should have the contact ratio εα ≥ 1.0 to provide a smooth mesh 
transition from one pair of teeth to the next. Isogram εα = 1.0 limits a choice 
of the spur gear combinations. Helical gears have an additional axial (or face) 
contact ratio εβ that allows the transverse contact ratio to be εα ≥ 0. The total 
contact ratio of helical gears must be εγ = εα + εβ ≥ 1.0. Isogram εα = 0  limits 
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Interference isograms: (a) for external gears, (b) for internal gears, (c) for rack and pinion.
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a choice of the helical gear combinations [37]. However, commonly helical 
gears have the transverse contact ratio εα ≥ 1.0.

3.1.3  Interference Isograms

The interference isograms are shown in Figure 3.3. Although the interference 
isograms present the borders of the area of existence, this does not mean 
that the gear meshes do not exist beyond these borders. However, those gear 
combinations have the tooth root undercut in at least one of the mating gears, 
and they are typically undesirable.

Equations (2.59) to (2.64) define the profile angles αp1 and αp2 at the end-
points of the active involute flanks near the tooth root area. In the  external 
gearing (Figure 3.3a) αp1 = 0° and αp2 = 0° describe a beginning of the root 
area interference (or undercut) for the pinion and the gear accordingly. The 
αp1 = 0° isogram is described by the system of equations (3.4) and

 ( ) (arctan( tan )) ( ) (1
1

2 1 2+ ×
+

× − − ×u inv
u

u
inv u invaα ν ν )) + =π

z1
0 , (3.17)

which is a result of the combined solution of Equations (2.56) and (2.59). 
The αp2 = 0° isogram is described by the system of Equations (3.4) and
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 ( ) (arctan( tan )) ( ) (1
1

1
1 1 2+ ×

+
× − − ×u inv

u
inv u invaα ν ν )) + =π

z1
0 , (3.18)

which is a result of the combined solution of Equations (2.56) and (2.60).
In the internal gearing (Figure 3.3b) the angle αp2 cannot be equal or close 

to zero, and only αp1 = 0° describes the root area interference (or undercut) 
condition for the pinion. Its isogram is described by the system of Equations 
(3.5) and

 ( ) (arctan( tan )) ( ) (u inv
u

u
inv u inva− ×

−
× + − ×1

1
2 1 2α ν ν )) = 0 , (3.19)

which is a result of the combined solution of Equations (2.57) and (2.61).
The tip/tip interference (Section 2.2.1.3) is possible in the internal gear 

gearing. Its condition and isogram are defined by Equations (2.70) to (2.73) 
and (3.5).

For a rack and pinion gearing the angle αp2 = ν2 = α. As a result, isogram 
αp2 = 0° coincides with the axis ν1 when ν2 = α = 0°. The equation describing  
isogram αp1 = 0° (Figure  3.3c) is defined from (3.9) or (3.10), (2.49), (2.58), 
and (2.63):

 z m z inv inva1 2
2

2 2 1 1 2 0(sin ) tan ( ( ( ) ( ))ν ν π ν ν− − − − = . (3.20)

3.1.4  Pitch Point Location Isograms

In conventional gearing the operating pitch diameter dw1 or dw2 (or the rack 
gear tooth operating pitch line) divides the gear tooth height on the adden-
dum and dedendum portions, and the pitch point P is located on the active 
part of the contact line A1-A2 (Figure 3.4). For external gears this means that 
the operating pitch diameter is larger than the form diameter and smaller 
than the tooth tip diameter. For internal gears this means that the operating 
pitch diameter is smaller than the form diameter and larger than the tooth 
tip diameter. The gear rack tooth, in this case, has its operating addendum 
0 < Haw < Hw. Normally a gear mesh has the approach and recess actions, 
while the contact point is moving along the contact line. An approach action 
is when the contact point C lies between point A2 and pitch point P of the 
contact line, or the driving pinion dedendum is in contact with the driven 
gear addendum. A recess action is when the contact point C lies between 
pitch point P and point A1 of the contact line, or the driving pinion adden-
dum is in contact with the driven gear dedendum.

It is also possible to have only the approach action gearing (Figure  3.5) 
when the driving gear has the tip diameter da1 ≤ dw1 or αa1 ≤ αw. In the 
approach action gearing the driving gear tooth has only the dedendum 
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without addendum. Accordingly, the driven gear or rack tooth has only the 
addendum without dedendum. Pitch point P is located outside the active 
part of contact line A1-A2 (beyond point A1 on Figure 3.5).

The recess action gearing is shown in Figure  3.6. In the external mesh 
the driven gear has the tooth tip diameter da2 ≤ dw2 or αa2 ≤ αw. In the inter-
nal mesh the driven gear has the tooth tip diameter da2 ≥ dw2 or αa2 ≥ αw. 
In the recess action gearing the driving gear tooth has only the addendum 
without dedendum . Accordingly, the driven gear or rack tooth has only the 
dedendum without addendum. Pitch point P is located outside the active 
part of contact line A1-A2 (beyond point A2 on Figure 3.6).

The isograms of the pitch point location are shown in Figure 3.7. Isogram 
αa1 = αw is a border between the conventional and approach action gearing 
areas. Considering Equations (3.4) and (2.56), this isogram equation is

 inv inv
m u

z
a( ) ( )

( )ν ν π
1 2

1

2

1
0− + − + = . (3.21)

For the internal gearing this isogram equation derives from a common 
solution with (3.4) and (2.57)

 inv inv
m u

z
a( ) ( )

( )ν ν1 2
1

2

1
0− − − = . (3.22)

For the rack and pinion gearing a gear ratio u = ∞ and isogram αa1 = αw = α 
= ν2 equation is defined from (3.21) or (3.22):

 inv inv
m
z

a( ) ( )ν ν1 2
2

1
0− − = . (3.23)

Isogram αa2 = αw is a border between the conventional and recess action 
gearing areas. For external gearing it is a solution of a system of Equations 
(3.4) and (2.56):

 inv inv
m u u

z
a( ) ( )

( )ν ν π
1 2

2

2

1
0− + + − = . (3.24)

For the internal gearing it is a solution of a system of Equations (3.5) and (2.57):

 inv inv
m u

z
a( ) ( )

( )ν ν1 2
2

2

1
0− − − = . (3.25)

For the rack and pinion gearing a border between the conventional and 
recess action gearing areas is presented by the isogram presenting the rack 



70 Direct Gear Design

© 2008 Taylor & Francis Group, LLC

A1

da2

da1
dw1

dw2

db2

A2

αa1

C
P

db1

αw

αa2

(a)

A2

da2

dw1

dw2

A1 C
P

αw

αa2

db1

αa1

da1

db2

(b)

FIGURE 3.4
Conventional action gearing: (a) external gears, (b) internal gears, (c) rack and pinion.
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tooth addendum Haw = 0 that can be described by Equations (3.24) or (3.25) 
when a gear ratio u = ∞.

 inv inv
m

z
a( ) ( )ν ν π

1 2
2

1
0− − − = . (3.26)

The isograms of the pitch point location are situated between isograms 
αa1 = 0°, αa2 = 0°, and αw = 0°. Most gear applications use the conventional 
action gearing, because it provides better performance parameters, such as 
high mesh efficiency (minimal tooth profile sliding), tooth surface durability , 
bending stress balance, etc. However, the approach and recess action gearings 
also may have rational areas of applications. For example, the recess action 
gearing is used for the self-locking gears (Section 6.3).

3.1.5  Performance Parameters’ Isograms

There are many other isograms that can be drawn in the area of existence. 
This section presents a few of them, which define gear pairs with certain 
constant performance characteristics.

Gear transmission power density and its load capacity in many cases are 
defined by the tooth surface durability. This requires minimization of the con-
tact (Hertz) stress σH. Gear pairs with the minimal contact stress should have 
the maximum transverse contact ratio εα, if the operating pressure angle αw is 
given, or the maximum operating pressure angle αw, if the transverse contact 
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FIGURE 3.4 (continued)



72 Direct Gear Design

© 2008 Taylor & Francis Group, LLC

A1
P

dw1

da2

da1

dw2

db2

αa1

αw

C db1

A2

αa2

(a)

αa1

da2

da1

P
A1

C

αa2

αw

db1

A2

db2

dw2

dw1

(b)

FIGURE 3.5
Approach action gearing: (a) external gears, (b) internal gears, (c) rack and pinion.
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ratio εα is given. These conditions occur when isograms αw = const and εα = const 
are tangent. The σHmin isogram (see Figure 3.8) presents the gear meshes that 
correspond to the tangent points of isograms αw = const and εα = const.

Maximization of gear efficiency is critically important for many gear appli-
cations. Gear efficiency depends on gear mesh losses that for a pair of spur 
gears is defined as [38]

 P
f H H

H H
t

w

s t

s t
= × +

+
50 2 2

cos α
, (3.27)

where f is the average friction coefficient, Hs is the specific sliding velocity at 
the start of the approach action, and Ht is the specific sliding velocity at the 
end of the recess action.

Hs and Ht are ratios of the sliding velocity to the rolling velocity. They can 
be defined for the external and internal gears as follows:

 H us w a w= ± × × ±( ) cos ( tan tan )1 2α α α∓ , (3.28)

 H
u

u
t w a w= ± × × −1

1cos (tan tan )α α α , (3.29)

where the signs ± and ∓ are for the external gears and internal gears, respectively.
Alternatively, from (3.28), (2.60), or (2.62), and from (3.29), (2.59), or (2.61), 

accordingly, specific sliding velocities are
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FIGURE 3.5 (continued)
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Recess action gearing: (a) external gears, (b) internal gears, (c) rack and pinion.
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 H
u

u
s w w p= ± × × −1

1cos (tan tan )α α α , (3.30)

 H ut w w p= ± × × ±( ) cos ( tan tan )1 2α α α∓ . (3.31)

The gear rack number of teeth is z2 = ∞, and as a result, the gear ratio is 
u = ∞. Then from (3.30) the specific sliding velocity at the start of approach 
action is

 Hs w w p= × −cos (tan tan )α α α 1 , (3.32)

and from (3.29) the specific sliding velocity at the start of recess action is

 Ht w a w= × −cos (tan tan )α α α1 . (3.33)

From Equation (3.27) a minimum of the gear mesh losses happens when 
Hs = Ht. This means that a maximum of the gear mesh efficiency Emax can be 
defined for the external and internal gearings from (3.28) and (3.29) as

 tan tan ( ) tanα α αa a wu u1 2 1 0∓ ∓± = . (3.34)

Equations of maximum gear mesh efficiency Emax value isograms 
(Figure  3.8) are defined as a solution of Equations (3.34) and (3.4) for the 
external gearing, and Equations (3.34) and (3.5) for the internal gearing.
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For the rack and pinion gearing a condition Hs = Ht that defines a maxi-
mum of the gear mesh efficiency Emax is from (3.32) and (3.33)

 tan tan tanα α αa p w1 1 2 0+ − = . (3.35)

The maximum of the gear mesh efficiency Emax isogram for the rack 
and pinion gearing is defined as a solution of Equations (3.35), (3.4), (2.63), 
and (3.9) or (3.10).

Gear tooth geometry, including the tooth flanks and root fillet, affect the 
maximum bending stress level. The bending stress balance equalizes the 
tooth root strength of mating gears. If gears are made of similar materials 
and have a relatively close number of load cycles, the maximum bending 
stresses of mating gears should be equalized. The equal bending stress iso-
gram σF1 = σF2 is defined assuming that the mating gears have identical face 
widths. This isogram (Figure 3.8) allows preliminary selection of a pair of 
gears with the equalized bending strength. Then during final gear design the 
mating gear face widths can be adjusted also considering a number of load 
cycles of each gear to achieve more accurate bending strength equalization.

In traditional gear design the tooth fillet profile is typically a trajectory 
of the generating tooling gear rack. Any point of the block contour (see 
Figure 1.5) presents the gear pair with completely described tooth profiles 
that include the root fillets. In Direct Gear Design the tooth flanks and root 
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Performance parameter isograms: (a) for external gears, (b) for internal gears, (c) for rack 
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fillets are constructed independently, and the tooth fillet profile is opti-
mized to minimize bending stress concentration (see Section 5.3). However, 
the tooth fillet profile optimization is a time-consuming process that is used 
for the final stage of gear design. It is not practical for browsing the area of 
existence analyzing many sets of gear pairs. For preliminary construction 
of the interference-free tooth root fillet profile that also provides relatively 
low bending stress concentration, the virtual ellipsis arc is built into the 
tooth tip that is tangent to the involute profiles at the tip of the tooth [39]. 
This makes the root fillet profile a trajectory of the mating gear tooth tip 
virtual ellipsis arc (see Figure 3.9). The ellipsis arc is chosen because it fits 
both symmetric and asymmetric tooth profiles and results in lower bend-
ing stress level. This fillet profile can be considered pre-optimized because 
it provides lower bending stress concentration than the full tip radius rack 
generated fillet profile commonly used for bending stress reduction in tra-
ditional gear design.

When the gear tooth with the root fillet is defined, the bending stress is 
calculated by the finite element analysis (FEA) method.

The equal maximum bending stress isogram σF1max = σF2max is shown in 
Figure 3.8. This isogram is typical for the external gearing and the rack and 
pinion gearing. The internal gear tooth with the equal face width with its 
external mating gear usually has significantly lower bending stress, because 
its root tooth thickness is typically much greater. It is why the equal bending 
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FIGURE 3.9
Tooth root fillet profile construction: (a) for external gears, (b) for internal gears, (c) for rack and 
 pinion. 1 - involute profiles; 2 - tooth tip lands; 3 - fillet profiles; 4 - ellipsis arcs. ((a) and (b) from 
Kapelevich, A.L., and Y.V. Shekhtman, Gear Technology, January/February 2010, 69. With permission.)
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stress isogram σF1 = σF2 for internal gears is not presented in Figure  3.8b. 
In this case, the bending stress balance can be achieved by the internal gear 
face width reduction.

3.1.6  Area of Existence and Gear Tooth Profiles

Summation of all the above-mentioned and other possible parameter or con-
dition isograms forms an area of existence. Every point of the area of exis-
tence presents the gear pair with a certain set of parameters and gear tooth 
profiles. Figure 3.10 presents areas of existence of the external, internal, and 
rack and pinion gearings with the gear pair tooth profiles  corresponding to 
certain points of those areas.

Some of those gear pair tooth profiles have a kind of exotic shape and pres-
ent rather theoretical interest. However, even they may find practical applica-
tions for some unconventional gear drives.

The maximum pressure angle for spur external gearing is achieved in 
point A (Figure 3.10a), where the contact ratio εα = 1.0. Pressure angle and 
area of existence coordinates at point A are defined by the combined solu-
tion of Equations (2.56), (2.75), and (3.4). The minimum pressure angle is at 
point B at the intersection of the interference isograms αp1 = 0° and αp2 = 0°. 
This pressure angle and the tooth tip profile angles at point B for exter-
nal gearing are defined from a combined solution of Equations (2.56), (2.59), 
(2.75), (2.60), and (3.4):

 α πεα
w
B

z u
=

+
arctan

( )
2
11

, (3.36)

 α πεα
a
B

z
1

1

2= arctan , (3.37)

 α πεα
a
B

z
2

2

2= arctan . (3.38)

In the spur internal gearing area of existence point A (Figure 3.10b) is also 
present in the gear pair with the maximum for spur gears pressure angle. 
Its location depends on the gear ratio u = z2/z1. A point A typically lies at 
the intersection of the εα = 1.0 and αp1 = 0° isograms. Then the gear mesh 
parameters at point A are defined by Equations (2.57), (2.60), (2.76), and (3.4). 
However, in some cases a point A is at the tangent point of the εα = 1.0 iso-
gram and the pressure angle isogram where its value is maximum for spur 
gears. This case is illustrated in Figure 3.13 (gear set 3). Then the gear mesh 
parameters at point A are defined by Equations (2.57), (2.76), and (3.4). Point 
B is at the intersection of the interference isogram αp1 = 0° and the tip/tip 
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external gears, (b) for internal gears, (c) for rack and pinion.
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interference isogram. Its gear mesh parameters are defined from the com-
bined solution of Equations (2.70) to (2.73), (3.4), and (3.5).

In the spur rack and pinion gearing area of existence the point A (Figure 3.10c) 
location depends on the pinion number of teeth z1. For a low number of teeth 
(z1 ≤ 10), point A is at the intersection of the εα = 1.0 and αp1 = 0° isograms. If the 
pinion number of teeth z1 > 10, point A is at the highest point of the εα = 1.0 
isogram, where the horizontal pressure angle isogram reaches its value maxi-
mum for spur gears. This case is illustrated in Figure 3.14 (gear sets 2 and 3). 
The maximum contact ratio for spur rack and pinion is achieved at the inter-
section of the horizontal axis ν2 = 0° and the interference isogram αp1 = 0°.

3.1.7  Areas of Existence for Gear Pairs with Different 
Relative Tooth Tip Thicknesses

An area of existence of the involute gearing is limited by the interference iso-
grams, and isogram εα = 1.0 for spur gears and isograms εα = 0 for helical gears. 
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FIGURE 3.11
Areas of existence of gears with number of teeth z1 = 18, z2 = 25, and different values of the 
relative tooth tip thicknesses ma1 and ma2; (a) for external gears, (b) for internal gears, (c) for 
rack and pinion.
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These border isograms depend on the relative tooth tip thickness values ma1 
and ma2. These thicknesses can vary from ma1 = ma2 = 0 (sharp tooth tips) 
to their maximum values ma1max and ma2max. The higher the relative tooth tip 
thicknesses ma1 and ma2, the smaller the area of existence (Figure 3.11). When 
the relative tooth tip thickness has its maximum for spur external gear values 
maM1 and maM1, an area of existence is shrunk to point M (Figure 3.11a) at the 
intersection of the interference isograms αp1 = 0° and αp2 = 0°, when the trans-
verse contact ratio is εα = 1.0.

For spur internal gears point M (Figure 3.11b) of the area of existence is 
at the intersection of isogram αp1 = 0° and the tip/tip interference isogram, 
when the transverse contact ratio is εα = 1.0.

For spur rack and pinion point M (Figure 3.11c) of the area of existence lies 
at the intersection of isogram αp1 = 0° and the axis ν2 = 0°, when the trans-
verse contact ratio is εα = 1.0.

For gear pairs with the relative tooth tip thicknesses ma1,2 > maM1,2, the 
transverse contact ratio is always εα < 1.0 and only helical gearing is pos-
sible. A theoretical minimum of the transverse contact ratio is εα = 0. This 
means that a sum of the tooth tip thicknesses is equal to the operating 
 circular pitch or

 S S pa a w1 2+ = , (3.39)

π/2
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FIGURE 3.11 (continued)
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or considering (3.3), the maximum relative tooth tip thicknesses are defined 
from

 m ma a1 2max max+ = π . (3.40)

A summation of the areas of existence for the gear pair with a given number 
of teeth with all possible values of the relative tooth tip thicknesses 0 ≤ ma1,2 ≤ 
ma1,2max forms the so-called generalized area of existence [7]. Figure 1.7 shows 
an example of such a generalized area of existence for spur gears. It is much 
greater than any generating rack block contour. It actually includes any gear 
pairs, generated by all possible racks, and also the gear pairs, which require 
two different dedicated racks to generate the mating gears. This comparison 
demonstrates how many gear pair combinations available with Direct Gear 
Design are not even considered by the traditional gear design approach.

3.1.8  Areas of Existence for Gear Pairs with Different Numbers of Teeth

Isograms of an area of existence of involute gearing depend on the number 
of teeth. Figures 3.12 to 3.14 present the overlaid areas of existence for gear 
pairs with different numbers of teeth. A part of areas of existence that pres-
ent spur gears and are limited by the transverse contact ratio isogram εα = 1.0 
is significantly smaller for gear pairs with a low number of teeth. Values of 
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FIGURE 3.12
Areas of existence of external gears with different number of teeth: 1 – z1,2 = 5, 2 – z1,2 = 20, 
3 – z1,2 = 80; ma1,2 = 0.1.
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FIGURE 3.13
Areas of existence of internal gears with different number of teeth: 1 – z1 = 4, z2 = 7, 2 – z1 = 20, 
z2 = 35, 3 – z1 = 80, z2 = 140; ma1 = 0.2, ma2 = 0.3.
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FIGURE 3.14
Areas of existence of rack and pinions with different number of teeth: 1 – z1 = 4, z2 = ∞, 2 – z1 = 20, 
z2 = ∞, 3 – z1 = 80, z2 = ∞; ma1 = 0.2, ma2 = 0.3.
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the pressure angles and the transverse contact ratios for spur gears in points 
A and B of these areas of existence are shown in Table 3.1.

3.2  Area of Existence of Asymmetric Gears

An area of existence of asymmetric gears is constructed similarly to an area 
of existence of symmetric gears. The drive flank profile angles νd1,2 at the 
involute intersection point are used as coordinates of the area of existence of 
asymmetric gears. It basically presents an overlay of two areas of existence: 
one for the drive flanks and another for the coast flanks of asymmetric gears. 
It is built with preselected values of the relative tooth tip thicknesses ma1,2 
and the asymmetry factor K.

3.2.1  Area of Existence and Gear Tooth Profiles

The areas of existence of asymmetric external, internal, and rack and pin-
ion gearings are shown in Figure 3.15. Figure 3.16 presents the areas of exis-
tence of the spur asymmetric gears (fragments of the areas of existence from 
Figure 3.15) and the tooth profiles at their different points.

Most of the isogram equations for asymmetric gears are the same as the 
equations for the symmetric gears. They define constant parameter values or 
mesh conditions separately for the drive and coast gear flanks.

Similar to the area of existence of symmetric gears, in the area of existence 
of asymmetric gears the gear pairs have the constant preselected relative 
tooth tip thicknesses ma1,2 that can be described as:

For external gears:

m
z

inv inva
wd

d c
ad

1 2
1 2

1 2 1
2 1 2

,
,

, ,
cos

( ( ) (
cos ,

= × +α ν ν
α

22 1 2 1 2) ( ) ( )), ,− −inv invad acα α . (3.41)

TABLE 3.1

Pressure Angle and Contact Ratio in Points A and B of Area of Existence

Gearings External (Figure 3.12) Internal (Figure 3.13)
Rack and Pinion 

(Figure 3.14)

Area of existence no. 1 2 3 1 2 3 1 2 3
Number 
of teeth

Pinion 5 20 80 4 20 80 4 20 80
Gear 5 20 80 7 35 140 ∞ ∞ ∞

Pressure 
angle, °

Point A 33.18 40.80 43.85 35.50 44.18 41.24 33.36 40.52 40.29
Point B 32.52 19.12 11.66 29.85 14.75 9.05 0.0 0.0 0.0

Contact 
ratio

Point A 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Point B 1.02 2.21 5.26 1.01 2.37 5.82 1.10 2.62 6.16



89Area of Existence of Involute Gears

© 2008 Taylor & Francis Group, LLC

For internal gears:

m
z

z inv inv ia
wd

d c
ad

2
2

2 2 2
2 2

2= × − − +cos
( / ( ) ( )

cos

α π ν ν
α

nnv invad ac( ) ( ))α α2 2+ . (3.42)

For gear racks:

 m ha a d c2
2

= − +π α α(tan tan ) . (3.43)

In most cases gears with asymmetric teeth are designed reversible, capable 
of transmitting torque or motion in both rotation directions. For this reason, 
their area of existence contains only reversible gear combinations. Typically 
the coast tooth flank has lower involute profile angles than the drive one, and 
the area of existence of asymmetric gears is limited by the coast flank inter-
ference isograms αpc1 = 0° and αpc2 = 0°. The spur gears must have a contact 
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FIGURE 3.15
Area of existence of asymmetric external gears: z1 = 18, z2 = 25; K = 1.3; ma1 = 0.25, ma2 = 0.35. 
Solid isograms are for the drive flanks, dashed isograms are for the coast flanks; (a) for external 
gears, (b) for internal gears, (c) for rack and pinion.
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ratio greater than 1.0. Therefore the area of existence of asymmetric revers-
ible spur gears is limited by the drive flank contact ratio isogram εαd = 1.0 
that is inside the coast flank contact ratio isogram εαc = 1.0. Helical gears can 
have a contact ratio lower than 1.0, and because the coast flank contact ratio 
isogram εαc = 0 is inside the drive flank contact ratio isogram εαd = 0, it limits 
the area of existence of asymmetric reversible helical gears.

The irreversible asymmetric gear geometry solutions can be found between 
the coast and drive flank interference isograms, between the contact ratio 
isograms εαd = 1.0 and εαc = 1.0 for spur gears, and between the contact ratio 
isograms εαc = 0 and εαd = 0 for helical gears.

The maximum of the drive flank pressure angle for the external spur gears 
is achieved in point A where its isogram is tangent to the drive flank con-
tact ratio isogram εαd = 1.0. The maximum of the drive flank contact ratio for 
external spur or helical gears is at point B at the intersection of the coast flank 
interference isograms αpc1 = 0° and αpc2 = 0°.

For the internal spur asymmetric gears, the same as for the internal spur 
symmetric gears, the point A location can be at the tangent point of the iso-
grams of the drive flank pressure angle and the drive flank contact ratio 
εαd = 1.0 or at an intersection point of the εαd = 1.0 isogram and the pinion 
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FIGURE 3.15 (continued)
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coast flank interference isogram αpc1 = 0°. Point B of an area of existence of 
the internal asymmetric gears is at the intersection of the pinion coast flank 
interference isogram αpc1 = 0° and the tip/tip inter ference isogram.

Similar to the symmetric spur rack and pinion gearing, point A in an area 
of existence of the asymmetric spur rack and pinion gearing can be located 
either at the highest point of the drive flank contact ratio isogram εαd = 1.0, 
where the horizontal isogram of the drive flank pressure angle reaches its 
maximum value, or at an intersection of the εαd = 1.0 isogram and an isogram 
of the pinion drive flank interference αpd1 = 0°, depending on the pinion num-
ber of teeth. Point B is located where the drive flank contact ratio isogram is 
tangent to the pinion coast flank interference isogram αpc1 = 0° (Figures 3.15c 
and 3.16c).

3.2.2  Areas of Existence for Gear Pairs with 
Different Asymmetry Factors

Shape and size of an area of existence of asymmetric gears greatly depend 
on the asymmetry factor K [40]. An overlay of areas of existence of the spur 
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FIGURE 3.16
Area of existence and gear teeth profiles of spur asymmetric external gears: z1 = 18, z2 = 25; 
K = 1.3; ma1 = 0.25, ma2 = 0.35. Solid line isograms are for the drive flanks, dashed line isograms 
are for the coast flanks. (a) For external gears, (b) for internal gears, (c) for rack and pinion.
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asymmetric gears with different values of the asymmetry factor K is shown 
in Figure 3.17. When the asymmetry factor K = 1.0, gears are symmetric and 
their area of existence is largest. When the K factor increases, the pressure angle 
also increases but the area of existence decreases. At the maximum value of 
the  factor K for spur asymmetric gears the area of existence presents a point 
where the drive contact ratio isogram εαd = 1.0 passes through an intersection 
of the coast flank interference isograms αpc1 = 0° and αpc2 = 0°. Here points A 
and points B coincide. Table 3.2 presents values of the drive and coast pres-
sure angles and contact ratios at points A and B of areas of existence of the 
reversible spur asymmetric gears with different asymmetry factors, which 
are shown in Figure 3.17. It demonstrates potentials of asymmetric gears in 
increasing the drive pressure angle. Limits of the asymmetry factor K and 
drive pressure angle selection are described in Chapter 4. Rational selection of 
the asymmetry  factor K are considered in Section 5.12.

3.3  Area of Existence and Pitch Factors

In the previous section areas of existence of asymmetric gears are consid-
ered with the given constant asymmetry factor K, and the relative tooth 
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tip thicknesses ma1 and ma2. The pitch factors θd, θd, and θv (see Section 2.3) 
in this case are varying. Figure 3.18 presents the overlaid areas of exis-
tence of spur external gears with the different constant drive flank pitch 
factors  θd. This type of area of existence of involute gears defines only 
the drive flank gear meshes. If θd ≤ 0.5, the gears can have symmetric or 
asymmetric teeth. If θd > 0.5, the gears can have only asymmetric teeth. 

TABLE 3.2

Pressure Angle and Contact Ratio in Points A and B of Area of Existence of 
Asymmetric Gears

Gears Symmetric Asymmetric

Asymmetry Coefficient 1.0 1.2 1.4 1.575

Pressure angle, ° Point A 37.07 43.08/28.78a 48.10/20.79a 51.54/12.76a

Point B 17.40 36.42/15.07a 46.05/13.66a 51.54/12.76a

Contact ratio Point A 1.0 1.0/1.10a 1.0/1.26a 1.0/1.55a

Point B 2.14 1.31/1.84a 1.09/1.66a 1.0/1.55a

a Drive flank/coast flank.
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FIGURE 3.17
Areas of existence of external asymmetric gears with number of teeth z1 = 18, z2 = 25 and rela-
tive tooth tip thicknesses ma1 = 0.25, ma2 = 0.35 with different asymmetry coefficients K. Solid 
line isograms are for the drive flanks, dashed line isograms are for the coast flanks. 1 – K = 1.0, 
2 – K = 1.2, 3 – K = 1.4, 4 – K = 1.575.
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The gears with symmetric teeth are always reversible. The gears with 
asymmetric teeth can be reversible or irreversible, depending on the coast 
flank pitch factor θc selection.

For the drive flanks of the external gears the pressure angle isogram equa-
tion is defined from Equation (2.151) considering the tooth tip radii equal to 
zero. Then the effective tooth tip angles αed1,2 should be replaced by the tooth 
tip angles αad1,2

 inv uinv u inv
z

ad ad wd
d( ) ( ) ( ) ( )α α α πθ

1 2
1

1
2

0+ − + − = . (3.44)

The contact ratio isogram is defined by Equation (3.44) and

 tan tan ( ) tanα α α πεα
ad ad wd

du u
z

1 2
1

1
2

0+ − + − = . (3.45)

A result of subtracting Equation (3.44) from Equation (3.45) is

 α α α π ε θα
ad ad wd

d du u
z

1 2
1

1
2

0+ − + − − =( )
( )

. (3.46)
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FIGURE 3.18
Areas of existence of external spur gears with z1 = 18, z2 = 25 and different values of the pitch 
factor θd; 1 – θd = 0.1, 2 – θd = 0.3, 3 – θd = 0.5, 4 – θd = 0.7.
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The interference isograms αpd1 = 0° and αpd2 = 0° are defined by Equation 
(3.44) and

 u uad wdtan ( ) tanα α2 1 0− + =  (3.47)

and

 tan ( ) tanα αad wdu1 1 0− + = . (3.48)

In point A of the area of existence, where the drive flank pressure angle 
αwd is maximum and the contact ratio εαd = 1.0, the pressure angle and con-
tact ratio isograms have a common tangent point and the first derivatives of 
these isogram functions should be equal:
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d

d
d
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ad

adwd d
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αα εα
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1 1 0= =

= , (3.49)

or with (3.44) and (3.45),
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 or (3.50)

 α αad ad1 2= . (3.51)

This means points A of the areas of existence lie on the straight line αad1 = αad2. 
The pressure angle equation at point A is defined as a solution of Equations 
(3.44), (3.45), and (3.51):

 tan tan(
( )

)α π α π θ
wd

t
wd

d

tz z
+ − + − =2 2 1

0 , (3.52)

where zt = z1 + z2 is the total number of teeth of mating gears.
Its solution is [29]

 α π π
π θ

π
wd
A

t
t

d

t

tz z
z

z
= + − − −arctan(
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( ) )

2

2

2
2 1 1 . (3.53)

Then from (3.45) the coordinates of point A at the area of existence are

 α α π π
π θ

π
ad ad
A A

t
t

d

t

z z
z

z1 2

2

2

2
2 1 1= = + − − +arctan(

tan
( ) tt

) . (3.54)
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In point B at the intersection of the interference isograms αpd1 = 0° and 
αpd2 = 0° the pressure angle is minimum and the contact ratio is maximum. 
This maximum contact ratio is defined as a solution of Equations (3.45), (3.46), 
(3.47), and (3.48):

arctan( ) arctan( ) ( )arctan(
2 2

1
2

1 2

πε πε πα αd d

z
u

z
u+ − + εε π ε θα αd

t

d d

z z
)

( )− − =2
0

1

. (3.55)

Then the coordinate angles αad1 and αad2, and drive pressure angle αwd at 
point B, are defined from Equations (3.36), (3.37), and (3.38) presented for 
drive flanks:

 α πεα
ad
B d

z1

2

1
= arctan( ) , (3.56)

 α πεα
ad
B d

z2

2

2
= arctan( ) , (3.57)

and

 α πεα
wd
B d

tz
= arctan( )

2
. (3.58)

The coordinate angle αad1 at intersection point C of isograms εαd = 1.0 and 
αpd1 = 0° from Equations (3.46) and (3.47) is

 α πad
C z1 2 1= arctan( / ) . (3.59)

The coordinate angle αad2 and pressure angle αwd at point C are defined 
from

 arctan( ) ( )arctan( tan )
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 (3.60)

and
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(2 1

1
2 1

1

π α α π
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u
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u
uwd wd+ + − + − − θθd

z
)

1
0= . (3.61)

The coordinate angle αad2 at intersection point D of isograms εαd = 1.0 and 
αpd2 = 0° from Equations (3.46) and (3.48) is

 α πad
D z2 2 2= arctan( / ) . (3.62)
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The coordinate angle αad1 and pressure angle αwd at point D are defined 
from equations

 α π α π
ad adu

z
u

u
1

2
1

2
1

1
1

2+ − +
+

−arctan( ) ( )arctan( tan )
(11

0
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 (3.63)

and

 arctan(( ) tan ) arctan( ) ( )
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1
2

1
2 1

2
+ + − + −u u

z
uwd wdα π α π −− =θd

z
)

1
0 . (3.64)

The pressure angles αwd, contact ratios εαd, and coordinate angles αad1 and 
αad2 of points A, B, C, and D of the areas of existence from Figure 3.18 are 
presented in Table 3.3.

Points of the area of existence with the constant drive flank pitch factor do 
not define complete mating gear teeth, but just their drive flanks. This allows 
independent selection of the tooth tip thicknesses and the coast tooth flank 
parameters of asymmetric gears. Considering the tooth tip radii and back-
lash equal to zero, the noncontact pitch factor θv from (2.150) is

 θ α α
π αv

a ad a ad

wd

m m= +1 1 2 2cos cos
cos

. (3.65)

TABLE 3.3

Gear Parameters in Points A, B, C, and D of Area of Existence

Drive Flank Pitch Factor 0.1 0.3 0.5 0.7

Point A αwd, ° 14.5 30.19 42.86 55.51

εαd 1.0 1.0 1.0 1.0

αad1, ° 22.04 36.05 47.04 58.02

αad2, ° 22.04 36.05 47.04 58.02
Point B αwd, ° 10.48 15.46 18.64 21.14

εαd 1.27 1.89 2.31 2.65

αad1, ° 23.84 33.45 38.86 42.73

αad2, ° 17.65 25.44 30.12 33.63
Point C αwd, ° 14.15 23.86 29.74 34.45

εαd 1.0 1.0 1.0 1.0

αad1, ° 19.24 19.24 19.24 19.24

αad2, ° 23.44 37.26 44.5 49.72
Point D αwd, ° 11.61 18.55 23.05 26.73

εαd 1.0 1.0 1.0 1.0

αad1, ° 26.15 38.71 45.47 50.27

αad2, ° 14.11 14.11 14.11 14.11
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When some point of the area of existence with coordinates αad1 and αad2 

is chosen, the pressure angle αwd is calculated by Equation (3.44). Then after 
selection of the relative tooth tip thicknesses ma1 and ma2, the noncontact 
pitch factor θv is calculated by Equation (3.65). This allows defining the coast 
flank pitch factor as

 θ θ θc d v= − −1 . (3.66)

If the tooth tip radii are equal to zero that makes αed1,2 = αad1,2 and αec1,2 = αac1,2, 
the asymmetry factor K can be defined as a solution of Equations (2.93) and 
(2.153):

 

( ) ( cos( cos )) ( cos( cos ))1 1+ =u inv arc K inv arc Kwd adα α

++ −uinv arc K
z

ad
c( cos( cos ))α πθ

2
1

2
. (3.67)

Now the pressure angle and the coast flank tooth tip angles can be defined:

 α αwc wdarc K= cos( cos ) , (3.68)

 α αac adarc K1 2 1 2, ,cos( cos )= . (3.69)

Equation (2.110) defines the coast flank contact ratio. The profile angles at the 
lowest points of contact near the root fillet for the drive and coast tooth flanks 
are described by Equations (2.95) and (2.96), and (2.97) and (2.98), accordingly.

3.4  Application of Area of Existence

Area of existence of involute gears is a research tool that can be used to find 
some exotic gear mesh solutions that were not known before. It also allows 
locating gear pairs with certain characteristics. Its practical purpose is to 
define the gear pair parameters that satisfy specific performance require-
ments before detailed design and calculations. This involute gear research 
tool is incorporated into the preliminary design program with the finite ele-
ment analysis (FEA) subroutine. Such a program is able not just to generate 
all isograms for gears with the given numbers of teeth z1 and z2, relative tooth 
tip thicknesses ma1 and ma2, and asymmetry coefficient K, but also, with input 
of module or diametral pitch, gear face widths, and material  properties (the 
modulus of elasticity and Poisson ratio), promptly define the relative sliding 
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velocities, gear mesh efficiency, bending and Hetzian contact stresses, and 
create the gear mesh animation of any point of area of existence [39]. Such 
software allows limits of parameter selection of involute gears to be defined 
quickly, feasible gear pairs to be located and animated, and their geometry 
and stress levels to be reviewed. Benefits of using the area of existence are:

•	 Consideration of all possible gear combinations
•	 Instant definition of limits of the gear performance parameters
•	 Awareness about nontraditional uncommon gear design options
•	 Quick localization of gear sets suitable for particular application
•	 Preliminary gear design optimization
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4
Involute Gearing Limits

The previous chapters have demonstrated how the Direct Gear Design® 
approach expands the involute gearing limits in comparison with the tradi-
tional gear design that is based on the rack generation. This chapter is dedi-
cated to definition of the gear parameter limits for the spur and helical gears 
with symmetric and asymmetric teeth. Some of the tooth shapes and gear 
mesh combinations presented below look rather unusual and may not have 
rational practical applications. A goal of this chapter is to show boundaries 
of the involute gearing parameters.

4.1  Number of Teeth

Selection of numbers of teeth of mating gears is critically important. First, 
it provides the required gear ratio. Second, when the gear ratio and center 
distance are specified, selected numbers of teeth define the gear tooth size 
that is described by a module in the metric system of a diametral pitch in 
the English system. The gear tooth size is a main parameter in the defini-
tion of the bending stress. Third, the number of gear teeth is a major factor 
in the definition of gear mesh efficiency. Along with the gear mesh geom-
etry parameters (pressure angle, contact ratio, etc.), a tooth number selection 
allows providing sufficient safety factors for bending and contact stresses, 
and wear resistance to optimize a gear pair design.

The maximum number of gear teeth is limited by application practicality 
and manufacturing technology. Most mechanically controlled gear hobbing 
machines can produce gears with a number of teeth up to 400 using one-start 
hobs. Usage of multistart hobs increases this limit accordingly. Some com-
puter numerical control (CNC) gear hobbing machines can produce gears 
with a number of teeth up to 1000 using one-start hobs. Other gear fabrica-
tion technologies like, for example, profile cutting or injection molding can 
provide gears with an even greater number of teeth.

From the application point, the maximum number of gear teeth may also 
be limited by tolerance sensitivity and operating conditions. If the gear pitch 
diameter is constant, an increase in the number of teeth leads to their size 
reduction, to the point where the size of the tooth becomes comparable with 
tolerance  values. Gear operating conditions may result in a similar effect for 
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fine pitch gears. For example, wide operating temperature range and appli-
cation of dissimilar gear and housing materials may lead to noticeable gear 
sizes and center distance changes also comparable to the tooth size.

4.1.1  Symmetric Gearing

Gear handbooks give a conservative minimum number of teeth to avoid the 
tooth root undercut by the tooling generating rack and reduce tooth flank 
sliding. For example, the gear handbook [38] indicates that the tooth root 
undercut occurs for the 14½° pressure angle spur gears with a number of 
teeth lower than 32, for the 20° pressure angle spur gears with a number of 
teeth lower than 17, and for the 25° pressure angle spur gears with a number 
of teeth lower than 12. These numbers of teeth are defined by the beginning 
of the undercut condition when the standard addendum coefficient ha = 1.0 
and the rack shift coefficient x = 0.

Figure  4.1 explains the minimum number of teeth definition. The tooth 
root undercut occurs when the generating rack addendum trajectory line 
A-A is below the tangent point N, where the normal to the rack profile at the 
pitch point touches the base diameter db.

Then the undercut avoidance condition is

 
z m

h x ma
min sin ( )
2

2 α ≥ − , (4.1)

where m is a module and α is the rack pressure angle. From here

dp = zmin × m
α

N
A A

db

x × m

ha × m

ha × m

P

FIGURE 4.1
Minimum number of teeth definition.
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 z
h xa

min
( )
sin

≥ −2
2 α

. (4.2)

Application of the rack shift coefficient x > 0 or the nonstandard generat-
ing rack with high-pressure angle α and low addendum coefficient ha allows 
achievement of a significantly lower minimum tooth number without tooth 
root undercut. The spur gears with a number of teeth as low as 6 are used in 
the external gear pumps.

Directly designed spur symmetric gears are not constrained by limita-
tions imposed by the generating rack and its X-shift. Minimum numbers 
of teeth of external spur gears depend on the gear ratio and are defined by 
the simultaneous conditions: the involute profile angles at the lowest contact 
points αp1,2 = 0° (point B of an area of existence) and the contact ratio εα = 1.0. 
The book [7] described a minimum number of teeth of external spur gears 
(Figure 4.2). Parameters of these gear pairs are presented in Table 4.1.

The pinion and gear tooth tip profile angles, and the pressure angle for 
these gears are from Equations (3.36), (3.37), and (3.38) when εα = 1.0. Then the 
flank pitch factor θ is from Equation (2.163) and the noncontact pitch factor θv 
can be defined from (2.169) as

 θ θv = −1 2 . (4.3)

Assuming equal relative tooth tip thicknesses ma1 = ma2, they are from (3.65)

 m ma a
v w

a a
1 2

1 2
= =

+
πθ α
α α

cos
cos cos

. (4.4)

The minimum numbers of teeth of internal spur gears are defined by 
the simultaneous conditions: the pinion involute profile angle at the lowest 
contact points αpd1 = 0° and the beginning of the tip/tip interference that is 
described by Equation (2.70) (point B of an area of existence) and the contact 
ratio εα = 1.0. Internal spur gears with minimum numbers of teeth are shown 
in Figure 4.3. Their parameters are in Table 4.2.

In the rack and pinion mesh a minimum number of the pinion teeth is 
three, and the rack’s number of teeth is considered infinite.

Figure 4.4 presents an unusual but kinematically possible epicyclic sym-
metric spur gear stage with a one-tooth sun gear, two idler gears, also with 
one tooth, and three-tooth ring gear.

Work of this gear stage is also quite unusual. Normally in an epicyclic gear 
stage all idler gears transmitting motion from the sun gear to the planet gear 
are constantly and simultaneously engaged with both of them. If this case, 
in position 0° (Figure 4.4a) the sun gear is engaged with both idler gears, 
and they are engaged with the ring gear. Then while moving from position 
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(a)

(b)

(c)

FIGURE 4.2
External symmetric spur gears with low number of teeth: (a) z1,2 = 5, (b) z1 = 4, z2 = 6, (c) z1 = 3, 
z2  =  11. (From Kapelevich, A.L., and R.E. Kleiss, Gear Technology, September/October 2002, 
29–35. With permission.)
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TABLE 4.1

External Symmetric Spur Gears with Low Number of Teeth

Pinion number of teeth, z1 5 4 3
Gear number of teeth, z2 5 6 11
Flank pitch factor, θ 0.46 0.48 0.495
Relative tooth tip thickness, ma1,2 0.17 0.09 0.02
Pressure angle, αw

 ° 32.07 32.1 24.19

Contact ratio, εα 1.0 1.0 1.0

Pinion tooth tip profile angle, αa1
 ° 51.41 57.47 64.5

Gear tooth tip profile angle, αa2
 ° 51.41 46.27 29.76

FIGURE 4.3
Internal symmetric spur gears with minimum number of teeth: z1 = 3, z2 = 6.

TABLE 4.2

Internal Symmetric Spur Gears with Minimum 
Number of Teeth

Gear External Internal

Number of teeth, z 3 6
Transverse pressure angle, αw

 ° 33.62

Transverse contact ratio, εα 1.0

Tooth tip profile angle, αa
 ° 64.5 18.4
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0° to position +90° (Figure 4.4b), the sun gear is driving only the left idler 
gear, which transmits motion to the ring gear. The right idler gear does not 
transmit motion, but it is moved by the ring gear. When gears pass position 
+180°, the left and right idler gear motion transmission roles are changed, 
i.e., during one half of revolution of the sun gear, one idler gear transmits 
motion, then another one. It allows transmittal of motion despite the contact 
ratios in both sun/planet and planet/ring gear meshes being lower than 1.0. 
Parameters of such an epicyclic gear stage are shown in Table 4.3.

Helical gears also have an axial contact ratio εβ that compensates for 
the lack of a transverse contact ratio εα (see Section 2.2.3), which can be 
reduced to zero. This makes it possible to have a minimum number of teeth 
z1 = z2 = 1 [35]. Figure 4.5 shows specimens of the external helical symmetric 
gears with numbers of teeth equal 1 and 2. Main parameters of these gears 
are in Table 4.4. Figure 4.6 presents their areas of existence.

12
4

3

(a)

4

1
32

(b)

FIGURE 4.4
Epicyclic symmetric spur gear stage with minimum number of teeth: (a) position 0°, (b) posi-
tion +90°. 1 - sun gear; 2 - left idler gear; 3 - right idler gear; 4 - ring gear.

TABLE 4.3

Epicyclic Symmetric Spur Gears with Minimum Number of Teeth

Gear Sun Idler Ring

Number of teeth, z 1 1 3
Transverse pressure angle, αw

 ° 65 65

Transverse contact ratio, εα 0.56 0.59

Tooth tip profile angle, αa
 ° 75.6 75.6 56.1
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Figure  4.7 shows the internal helical symmetric gears with a minimum 
number of teeth. The main parameters of these gears are in Table 4.5.

4.1.2  Asymmetric Gearing

Many asymmetric gear applications require reversibility, when the coast 
flanks of the tooth are engaged in motion and limited (compare to the drive 
flanks) load transmission. For spur gears it means that the coast contact ratio 
εαc ≥ 1.0. Minimum numbers of teeth of such reversible spur asymmetric 
gears are the same as for the spur symmetric gears.

(a) (b)

FIGURE 4.5
External symmetric helical gears with low number of teeth: (a) z1,2 = 1, (b) z1,2 = 2. ((a) 
from Kapelevich, A.L., and R.E. Kleiss, Gear Technology, September/October 2002, 29–35. 
With permission.)

TABLE 4.4

External Symmetric Helical Gears with Low 
Number of Teeth

Number of teeth, z1,2 1 2
Transverse pressure angle, αw

 ° 65.0 65.3

Helix angle at pitch diameter, βw
 ° 29.2 29.5

Transverse contact ratio, εα 0.56 0.58

Axial contact ratio, εβ 1.0 0.5

Total contact ratio, εγ 1.56 1.08

Tooth tip profile angle, αa1,2
 ° 75.6 73.0
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The paper [41] described the asymmetric spur gears with numbers of teeth 
1, 2, and 3, and gear ratio u = 1. Those gears have the drive contact ratio εαc ≥ 1.0, 
but the coast contact ratio εαc < 1.0 that makes them irreversible. Such gears 
may not have the coast flank involute profiles at all. Examples of such irrevers-
ible asymmetric spur gears with number of teeth z1,2 = 1 and z1,2 = 2 are shown 
in Figure 4.8. The main parameters of these gears are shown in Table 4.6.

αp2 = 0°

80

70

60

807060

B

B

αad1 = αwd

αp1 = 0°
αad2 = αwd

2

1

ν2°

ν1°

FIGURE 4.6
Areas of existence of external symmetric helical gears with minimum number of teeth: 
1, z1,2 = 1; 2, z1,2 = 2.

FIGURE 4.7
Internal symmetric helical gears with minimum number of teeth z1 = 1, z2 = 2.
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4.2  Pressure Angle

The vast majority of gears are designed with standard tooth proportions. 
One of the main tooth proportion parameters is a pressure angle. Most 
gears are designed with the standard 20° pressure angle. The old standard 
pressure angle of 14½° is still in use. In some industries like, for example, 
aerospace, the 25° and 28° pressure angles are used [5, 42]. The term pressure 
angle, in this case, is actually related not to the gear mesh, but to the basic 
or generating rack that is used for design or as a cutter profile, accordingly. 
The gear (except the gear rack) involute profile angle varies from the form 
diameter to the tooth tip diameter. This section describes the transverse 
operating pressure angle, which is defined for a pair of mating gears as

 αw
b

w

d u
a

= ±
arccos(

( )
)1 1

2
. (4.5)

For spur gears with symmetric or asymmetric teeth the minimum pres-
sure angle is defined at point B of the area of existence constructed with the 
constant drive pitch factor θd (see Section 3.3), where the transverse contact 
ratio is εαd = 1.0. For external spur gears it can be found from Equation (3.58)

TABLE 4.6

Irreversible Asymmetric Spur Gears with Low Number of 
Teeth

Number of teeth, z1,2 1 2
Drive flank pitch factor, θd 0.952 0.835

Drive flank pressure angle, αwd ° 72.34 57.52

Drive flank contact ratio, εαd 1.0 1.0

Drive flank tooth tip profile angle, αad1,2
 ° 80.95 72.34

TABLE 4.5

Internal Symmetric Helical Gears with Minimum Number 
of Teeth

Gear Pinion Gear

Number of teeth 1 2
Transverse pressure angle, αw

 ° 65.0

Helix angle at pitch diameter, βw
 ° 61.0

Transverse contact ratio, εα 0.61

Axial contact ratio, εβ 0.5

Total contact ratio, εγ 1.11

Tooth tip profile angle, αa1,2
 ° 75.6 48.2
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 α π
wd
B

tz
= arctan( )

2
. (4.6)

The higher the number of teeth and gear ratio, the lower the pressure angle 
at point B. The tooth tip profile angles in this case are from Equations (3.56) 
and (3.57):

 α π
ad
B

z1

2

1
= arctan( ) , (4.7)

 α π
ad
B

z2

2

2
= arctan( ) . (4.8)

(a)

(b)

FIGURE 4.8
External irreversible asymmetric spur gears with low number of teeth: (a) z1,2 = 1, (b) z1,2 = 2.
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Then the drive flank pitch factor is from (3.44)

 θ
π

α α αd ad ad wd
z

inv uinv u inv= + − +1
1 2

2
1( ( ) ( ) ( ) ( )) . (4.9)

Table 4.7 presents the minimum pressure angles for gears with the gear 
ratio u = 1.0 and different numbers of teeth.

For helical gears with symmetric or asymmetric teeth the theoretical mini-
mum pressure angle is αw

 = 0°.
The maximum pressure angle for external spur gears with symmetric 

teeth is defined at point A of the area of existence, where the pressure angle 
isogram is tangent to the transverse contact ratio isogram εα = 1.0. It depends 
on the number of teeth of mating gears z1,2 and also on the relative tooth tip 
thicknesses ma1,2. The theoretical maximum pressure angle is achieved for a 
gear pair with the pointed teeth when ma1,2 = 0 and is defined as [7]

 α π π
π

π
w

t
t

t

tz z
z

z
max arctan(

tan
)= + − −

2

2

2
1 . (4.10)

From (4.10) is clear that when the total number of teeth is increasing and 
approaches infinity (zt → ∞), the pressure angle limit for external spur gears 
with symmetric teeth is αwlim = 45°.

The general solution for the maximum pressure angle for both symmetric 
and asymmetric gears is presented in Equation (3.53). When zt → ∞, the pres-
sure angle limit for external spur gears from this equation is defined as [29]

 α θ
θw lim arctan=

−1
. (4.11)

A chart of the maximum pressure angles αwmax for different total numbers 
of teeth and drive pitch factors is shown in Figure 4.9.

If the tooth asymmetry is defined by the factor K, the minimum and 
maximum drive pressure angles are defined in points B and A of the area 
of  existence, accordingly. Figure 4.10 presents ranges of the drive pressure 
angles for different numbers of teeth and asymmetry factors.

TABLE 4.7

Minimum Pressure Angle for External Spur Gears (u = 1.0)

Number of teeth, z1,2 5 10 20 50 100
Drive flank pitch factor, θd 0.46 0.18 0.05 0.009 0.002

Contact ratio, εαd 1.0 1.0 1.0 1.0 1.0

Minimum pressure angle, αwd
 ° 32.14 17.44 8.93 3.6 1.8

Tooth tip profile angle, αad1,2
 ° 51.49 32.14 17.44 7.16 3.6
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FIGURE 4.10
Minimum and maximum pressure angles for external spur gears with gear ratio u = 1 and 
relative tooth tip thicknesses ma1,2 = 0.
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FIGURE 4.9
Maximum pressure angles of external spur gears.
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The pressure angle limit for the external spur gears with zt → ∞ is [29]

 αw Klim arctan= . (4.12)

A chart of the pressure angle limit αwlim as a function of the asymmetry 
factor K is shown in Figure 4.11.

Helical gears can have the transverse contact ratio 0 < εα < 1.0. This expands 
a theoretical range of the transverse pressure angle to 0° < αw

 < 90°.
Figure 4.12 shows the helical gear models with a high-pressure angle of 

αw
 = 70° and transverse contact ratio εα = 0.5. A practical application of gears 

with very high transverse pressure angles (75° to 85°) is the self-locking 
gears (Section 6.3).

1.0

45

60

α° w
lim

2.0
K

FIGURE 4.11
Pressure angle limits for external spur gears.

FIGURE 4.12
Helical gears with high-pressure angle. (From Kapelevich, A.L., and R.E. Kleiss, Gear Technology, 
September/October 2002, 29–35. With permission.)
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4.3  Contact Ratio

The theoretical minimum transverse contact ratio for involute helical gears 
is εα = 0. In this case the active involute profiles of the mating gear flanks are 
shrunk to the point. Helical gears with theoretically pointed contact have 
found practical application in noninvolute Wildhaber-Novikov gears [43, 44].

In traditional gear design the maximum transverse contact ratio is defined by 
the selected basic or generating rack and its X-shifts for a pinion and gear. The 
contact ratio limit, in this case, is achieved when the number of teeth of mating 
gears approaches infinity: z1,2 → ∞. This limit can be defined as (see Figure 4.13)

 ε
αα lim

sin
= H

p
w

b
 (4.13)

or

 ε
π αα lim

sin( )
= 2

2
hw . (4.14)

Table 4.8 presents the contact ratio limits for different generating racks.

αα

pb

εα • pb

Hw

FIGURE 4.13
Contact ratio limit definition for traditionally designed gears.

TABLE 4.8

Contact Ratio Limits for Traditionally Designed Gears

Generating Rack Pressure Angle, α
Active Depth 
Coefficient, hw

Contact Ratio 
Limit, εαlim

Standard 14½° 2.0 2.63
Standard 20° 2.0 1.98
Standard 25° 2.0 1.66
Nonstandard 28° 1.8 1.38
Nonstandard 20° 2.3 2.28
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Direct Gear Design expands the transverse contact ratio range. Its maxi-
mum value depends on the type of gearing (external, internal, or rack and 
pinion), tooth profile (symmetric or asymmetric), number of teeth, and rela-
tive tooth tip thicknesses.

The highest contact ratio for gear pairs with a particular number of teeth 
and the relative tooth tip thicknesses is achieved at point B of area of exis-
tence at the intersection of the interference isograms. The lower the relative 
tooth tip thicknesses ma1,2, the higher the contact ratio at point B. It has its 
maximum value when the relative tooth tip thicknesses ma1,2 = 0. For external 
symmetric gears it is defined from Equation (3.55):

arctan( ) arctan( ) ( )arctan(
2 2

1
2

1 2

πε πε πεα α α

z
u

z
u+ − +

zz zt
)

( )− − =π εα2 1
0

1

. (4.15)

Maximum transverse contact ratios for external gears with symmetric 
teeth (Figure 4.14) are shown in Table 4.9.

(a) (b)

(c) (d)

FIGURE 4.14
External symmetric gears with maximum contact ratio: (a) number of teeth z1,2 = 5, (b) z1,2 = 10, 
(c) z1,2 = 20, (d) z1,2 = 50.
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Spur reversible asymmetric gears require the coast flank contact ratio 
to be εαc ≥ 1.0. The highest contact ratio is achieved at point B of area of 
existence at the intersection of the drive tooth flank interference isograms. 
Below this point the coast flank interference occurs, resulting in involute 
profile undercut. Such undercut is permissible if the coast flank contact 
ratio is εαc ≥ 1.0. The condition εαc = 1.0 defines the cost flank undercut pro-
file angles αuc1,2, drive and coast flank pitch factors θd and θc, and asymme-
try factor K. Maximum transverse contact ratios for spur external reversible 
asymmetric gears with the relative tooth tip thicknesses ma1,2 = 0 are shown 
in Table 4.10.

Table 4.10 data indicated that the maximum drive contact ratio of the revers-
ible asymmetric gears is just slightly greater than it is for the symmetric gears, 
and asymmetry of such gears is very low. Therefore application of asymmet-
ric reversible gears for drive contact ratio maximization is not practical.

Irreversible asymmetric gears present more theoretical rather than practi-
cal interest, because benefits of their applications are not apparent. Table 4.11 
and Figure 4.15 present such gears.

Figure 4.16 shows a comparison chart of maximum contact ratio and related 
pressure angle for symmetric and asymmetric (reversible and irreversible) 

TABLE 4.9

Maximum Contact Ratios for Gears with Symmetric Teeth

Number of teeth, z1,2 5 10 15 20 30 40 50
Maximum contact ratio, εα 1.04 1.51 1.9 2.26 2.89 3.46 3.98

Pressure angle, αw
 ° 33.14 25.31 21.72 19.53 16.85 15.21 14.05

Tooth tip angle, αa1,2 ° 52.56 43.4 38.55 35.35 31.21 28.53 26.59

Lowest involute angle, αp1,2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TABLE 4.10

Maximum Drive Contact Ratios for Reversible Asymmetric Gears

Number of teeth, z1,2 10 15 20 30 40 50
Drive contact ratio, εαd 1.53 1.931 2.288 2.924 3.49 4.015

Coast contact ratio, εαc 1.0 1.0 1.0 1.0 1.0 1.0

Drive flank pressure angle, αwd ° 25.67 22.02 19.77 17.02 15.34 14.157

Coast flank pressure angle, αwc ° 20.58 15.79 13.19 10.47 8.73 7.692

Drive flank tooth tip angle, αad1,2 ° 43.87 38.97 35.71 31.48 28.75 26.77

Coast flank tooth tip angle, αac1,2 ° 41.51 36.19 32.85 28.71 26.03 24.147

Drive flank lowest involute angle, αpd1,2 ° 0.0 0.0 0.0 0.0 0.0 0.0

Coast flank undercut angle, αuc1,2 ° 3.54 4.21 4.38 4.29 4.252 4.124

Drive flank pitch factor, θd 0.519 0.519 0.517 0.514 0.512 0.511

Coast flank pitch factor, θc 0.481 0.481 0.483 0.486 0.488 0.489

Noncontact pitch factor, θv 0.0 0.0 0.0 0.0 0.0 0.0
Asymmetry factor, K 1.039 1.038 1.035 1.028 1.025 1.022
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gears. It indicates that irreversible asymmetric gears allow realization of a 
significantly higher contact ratio.

The contact ratio for rack and pinion and internal gearings is noticeably 
higher than that for external gearing with the same pinion and pressure 
angle αw

 (see Figure 4.17).

4.4  Practical Range of Involute Gear Parameters

Direct Gear Design significantly expands boundaries of involute gearing. 
However, in most cases the gear tooth and mesh geometry parameters do not 
reach their theoretical limits, because of, first, specific gear application per-
formance requirements and, second, some material and technological con-
straints. For example, application of gears with a very low number of teeth 
is limited by increased specific sliding velocities, resulting in low mesh effi-
ciency, higher gear mesh temperature, and tooth flank scuffing probability. 
At the same time, this reduces tooth deflection under the operating load and 
flank impact damping, resulting in higher noise and vibration. On the con-
trary, gears with a given pitch diameter and very high number of teeth have 
a very small tooth size. This leads to reduced bending strength and increases 
gear drive assembly tolerance sensitivity, when at a certain tolerance com-
bination the contact ratio can be reduced to εα < 1.0, which also results in 
increased noise and vibration, and degrades gear drive performance.

A practical maximum pressure angle and transverse contact ratio are lim-
ited by the minimum tooth tip thickness. For a case of hardened teeth, it 
should be sufficient to avoid the hardening through the tooth tip. For gears 
out of soft metals and plastics it should be sufficient to exclude tooth tip bend-
ing. The minimum relative tooth tip thickness typically is ma1,2 = 0.25–0.3. 
A practical minimal contact ratio for conventional spur gears is about 
εαmin = 1.1–1.15. For high contact ratio (HCR) gears it is about εαmin = 2.05–2.1. 
These minimal contact ratio values are chosen to avoid its reduction below 1.0 
for conventional spur gears and below 2.0 for HCR spur gears, because of 
manufacturing and assembly tolerances, and tooth tip chamfers or radii. 
These conditions also identify the practical maximum pressure angle. The 

TABLE 4.11

Maximum Drive Contact Ratios for Irreversible Asymmetric Gears

Number of teeth, z1,2 1 3 5 10 20 33 48
Contact ratio, εαd 1.05 1.27 1.52 2.08 3.01 4.02 5.04

Pressure angle, αwd ° 73.07 53.1 43.66 33.15 25.31 20.97 18.27

Tooth tip angle, αad1,2 ° 81.35 69.43 62.35 52.56 43.41 37.46 33.44

Lowest involute angle, αpd1,2 0 0 0 0 0 0 0
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(a) (b)

(c) (d)

(e) (f)

(g)

FIGURE 4.15
External asymmetric irreversible gears with maximum contact ratio: (a) number of teeth z1,2 = 1, 
(b) z1,2 = 3, (c) z1,2 = 5, (d) z1,2 = 10, (e) z1,2 = 20, (f) z1,2 = 33, (g) z1,2 = 48.
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FIGURE 4.16
Maximum contact ratio εαmax (solid curves) and related pressure angle (dashed curves) of 
directly designed gears: 1 - with symmetric teeth; 2 and 3 - for reversible and irreversible 
asymmetric gears, accordingly.
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FIGURE 4.17
Contact ratio for external (ext), rack and pinion (r&p), and internal (int) mesh.
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practical minimal pressure angle for symmetric gears is defined by the begin-
ning of the tooth involute undercut, when the involute profile angles at the 
lowest contact points αpd1,2 = 0°, where the transverse contact ratio reaches its 
maximum value εαmax. Table 4.12 presents a practical range of pressure angles 
and contact ratios for spur external gears with symmetric teeth.

Application of gears with asymmetric teeth allows increasing the drive 
flank pressure angle in comparison with gears with symmetric teeth by the 
coast flank pressure angle reduction. If the coast flanks are not normally 
used for load transmission and may just occasionally be engaged in contact 
(as a result of tooth bouncing, inertial load during gear drive deceleration, 
etc.), the coast flank pressure angle can be as αwc

 = 10° to –15°. Practical max-
imum drive flank pressure angles for conventional and HCR asymmetric 
gears are shown in Tables 4.13 and 4.14.

The maximum drive pressure angle values in Tables 4.13 and 4.14 assume 
some possible small undercut of the coast flank near the root, especially for 
gears with a low number of teeth (15–30). However, this does not reduce the 
coast flank contact below εαc = 1.0. This undercut can be reduced or completely 
eliminated by using the slanted tooth tips (Figure 4.18) [28]. It increases the 
tooth tip land and reduces bending stress. These slanted tooth tips can be 
produced by the special topping gear cutter (hob) or by the secondary (after 
the tooth hobbing) tooth tip milling operation.

If the coast flanks are used in normal operating load transmission, as in, 
for example, idler or planet gears (in epicycling drives), asymmetry factor K 
and practical range of pressure angles and contact ratios are defined based 
on specific application requirements (see Section 5.1.2).
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TABLE 4.12

Practical Range of αw
 and εα for Symmetric Gears (ma1,2 = 0.3)

z2 Parameter

z1

10 12 15 20 30 40 50 70 100

10 αwmin 23.72

αwmax 31.70

εαmin 1.10

εαmax 1.40
12 αwmin 22.75 22.12

αwmax 32.02 32.71

εαmin 1.10 1.10

εαmax 1.47 1.55
15 αwmin 22.32 20.98 20.33

αwmax 32.89 33.20 33.60

εαmin 1.10 1.10 1.10

εαmax 1.54 1.65 1.77
20 αwmin 18.75 18.96 18.90 18.26

αwmax 33.60 33.90 34.20 34.50

εαmin 1.10 1.10 1.10 1.10

εαmax 1.62 1.75 1.91 2.10
30 αwmin 14.86 15.44 15.98 17.51 21.00

αwmax 34.50 34.70 34.80 35.01 35.58

εαmin 1.10 1.10 1.10 1.10 1.10

εαmax 1.69 1.85 2.05 2.10 2.10
40 αwmin 12.16 12.83 13.57 18.12 21.70 22.30

αwmax 35.10 35.20 35.30 35.40 35.65 35.96

εαmin 1.10 1.10 1.10 1.10 1.10 1.10

εαmax 1.72 1.88 2.10 2.10 2.10 2.10
50 αwmin 10.25 10.91 13.90 18.5 22.30 22.70 23.10

αwmax 35.42 35.50 35.60 35.70 35.85 36.10 36.30

εαmin 1.10 1.10 1.10 1.10 1.10 1.10 1.10

εαmax 1.73 1.90 2.10 2.10 2.10 2.10 2.10
70 αwmin 8.85 8.36 14.30 18.92 23.00 23.30 23.58 23.90

αwmax 35.80 35.90 35.95 36.06 36.30 36.40 36.50 36.60

εαmin 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

εαmax 1.74 1.92 2.10 2.10 2.10 2.10 2.10 2.10
100 αwmin 6.24 6.16 14.62 19.22 23.70 23.90 24.05 24.30 24.55

αwmax 36.20 36.25 36.30 36.35 36.45 36.55 36.65 36.75 36.80

εαmin 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

εαmax 1.74 1.92 2.10 2.10 2.10 2.10 2.10 2.10 2.10
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TABLE 4.13

Practical αwdmax for Conventional Asymmetric Gears 
(ma1,2 = 0.3, εαd = 1.1, αwc = 15°)

z2

z1

15 20 30 40 50 70 100

15 43.5
20 44.5 45.5
30 45.9 46.4 47.3
40 47 47.3 47.7 48.2
50 47.6 47.8 48 48.3 48.9
70 48 48.2 48.6 48.7 49 49.5
100 48.7 48.9 49.2 49.5 49.1 49.6 50

TABLE 4.14

Practical αwdmax for the HCR Asymmetric Gears 
(ma1,2 = 0.3, εαd = 2.1, αwc = 15°)

z2

z1

20 25 30 40 50 70 100

20 19.3
25 20.5 21.5
30 21.5 22.4 23
40 23 23.6 24.1 25
50 24.1 24.6 25 25.6 26.1
70 25.5 25.8 26.1 26.6 26.9 27.5
100 26.7 27 27.2 27.5 27.7 28.1 28.5

1da 3

4
2

dbc

FIGURE 4.18
Asymmetric tooth with slanted tip: da - gear outer diameter; dbc - coast flank base diameter; 
1 - circular tooth tip land; 2 - slanted tooth tip land; 3 - fillet profile with undercut optimized 
from a trajectory of the mating tooth with the circular tip; 4 - fillet profile optimized from a 
trajectory of the mating tooth with the slanted tip.
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5
Tooth Geometry Optimization

Direct Gear Design® is not limited by any preselected tooling parameters or 
fabrication process requirements. Its tooth geometry boundaries are consid-
erably expanded in comparison to the traditional gear design method. This 
allows definition of an optimal tooth shape for specific  custom gear application.

Gear tooth geometry optimization is a part of gear drive optimization 
that also includes optimization of the gear arrangement of multistage gear 
drives, rational material and manufacturing technology selection, choice of 
lubrication system, etc. A starting point of gear tooth geometry optimiza-
tion is to establish a set of priorities for specific gear drive applications. This 
“wish list” may include, for example:

•	 Gear transmission density maximization that requires minimizing 
gear drive size and weight for a given transmitted load and gear ratio, 
or maximizing the transmitted load for a given gear drive size

•	 Accommodation into the given space or envelope (typically for inte-
grated gear drives)

•	 Noise and vibration reduction
•	 Cost reduction
•	 Increased life and reliability
•	 Other performance enhancement requirements

These application priorities dictate the Direct Gear Design tooth  geometry 
optimization directions. As a part of the gear drive design it should be done 
in combination with other gear transmission component optimization.

5.1  Involute Profile Optimization

Involute tooth flank profiles influence many gear drive performance char-
acteristics, affecting contact surface endurance (pitting and scuffing resis-
tance), tooth bending fatigue resistance, profile sliding and gear efficiency, 
tooth flexibility and load sharing, vibrations and noise, etc.
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5.1.1  Gear Pair Size Reduction

Gear pair size reduction is typically limited by the tooth flank surface 
endurance defined by pitting and scuffing resistance. Both types of tooth 
surface defects depend on contact stress and tooth profile sliding velocity. 
Application of higher operating pressure angle (αw = 25−30° for gears with 
symmetric teeth and αwd = 30−45° for drive flank of gears with asymmet-
ric teeth) leads to the Hertz contact stress reduction. This allows increasing 
transmitted torque and/or reducing gear size (diameter, face width, or both), 
maintaining an acceptable contact stress level. This also makes gear teeth 
stubby, with the reduced whole depth and increased thickness at the root 
area reducing the bending stress. High-pressure angle gear pairs have a rela-
tively low contact ratio of εα = 1.1−1.5 and profile sliding that reduces scuffing 
probability. Drawbacks of a high-pressure angle gear application are higher 
separating load taken by bearings and higher stiffness of symmetric teeth 
tooth that reduces tooth engagement impact absorbing and leads to higher 
noise and vibration. In asymmetric teeth with high drive pressure angle the 
coast flank is designed independently, which allows reduction of the tooth 
stiffness, noise, and vibration.

Another way for the tooth profile optimization to reduce gear pair size 
is application of gears with high contact ratio (HCR). Conventional spur 
involute gears have a transverse contact ratio 1.0 < εα < 2.0 when one or two 
tooth pairs are in contact. The HCR spur gears have a transverse contact 
ratio εα ≥ 2.0 (typically 2.05–2.2) when two or three tooth pairs are in con-
tact. The HCR gears provide load sharing between gear pairs in contact, and 
according to [5] the maximum gear pair load does not exceed about 60% of 
the total load. The HCR gears have a relatively low operating pressure angle 
(αw = 18−23° for gears with symmetric teeth and αwd = 23−28° for drive flank 
of gears with asymmetric teeth), higher tooth addendum and whole depth, 
and reduced thickness at the tooth root. As a result, they have increased tooth 
deflection, providing a better load sharing between engaged tooth pairs and 
allowing reduction of contact and bending stresses, and also a noise and 
vibration level that makes them applicable for aerospace gear transmissions 
[5, 45]. However, the HCR gears must be accurate enough to have the base 
pitch variation lower than the tooth deflection under operating load to pro-
vide load sharing. These gears also have some drawbacks. The minimum 
number of teeth of the HCR gears should be at least 20 or more to provide 
the transverse contact ratio εα ≥ 2.0. Long tooth addendum and low operat-
ing pressure angle result in higher sliding velocity that increases scuffing 
probability and mesh power losses. However, according to [46], “despite their 
higher sliding velocities high contact ratio gears can be designed to levels of 
efficiency comparable to those of conventional gears while retaining their 
advantages through proper selection of gear geometry.”

Attempts to use the buttress asymmetric HRC gears in the sun/planet 
mesh of the planetary gear stage for noise and vibration reduction were not 
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successful [25, 26]. This could be explained by high stiffness of the buttress 
teeth that have low drive pressure angle and high coast pressure angle. 
It seems a more rational approach for many applications of the asymmetric 
gear is to have the drive tooth flanks with higher pressure angle than the 
coast ones. In case of the epicyclic gear stages where the planet gear has both 
driving flanks, the higher pressure angle should be used in the sun/planet 
gear mesh and the lower pressure angle in the planet/ring gear mesh 
(see Section 11.2). Application of this approach to the asymmetric HCR gears 
allows design of the coast flanks independently to reduce the gear tooth 
stiffness for better tooth load sharing. Table 5.1 presents samples of the gear 
tooth profile geometry for high-pressure angle and high contact ratio gears.

5.1.2  Asymmetry Factor Selection

Asymmetric tooth profiles make it possible to increase the operating pres-
sure angle (with the given transverse contact ratio) beyond the conventional 
symmetric gears’ limits. This allows reduction of drive flank contact stress 
and sliding velocity. As a result, the drive flanks of asymmetric gears have 
higher tooth surface endurance to pitting and scuffing, providing maxi-
mized transmission density.

Selection of the asymmetry factor K depends on the gear pair operating 
cycle that is defined by RPM and transmitted load in the main and reversed 
directions, and life requirements [47]. These data allow calculation of num-
bers and magnitude of the tooth load cycles in each regime in both load 
transmission directions. If the gear tooth is equally loaded in both the main 
and reversed rotation directions, asymmetric tooth profiles should not be 
considered. Table  5.2 presents different torque transmission cases by the 
spur gear pairs with the identical 24 tooth mating gears to illustrate bidirec-
tional and unidirectional drive applications.

5.1.2.1  Cases 1 and 2

The gear teeth are symmetric and their surface durability is identical for both 
drive and coast flanks. Case 1 presents the traditionally designed 25° pres-
sure angle gear pair with the full radius fillet. This case is considered a base-
line, and its Hertz contact stress, bearing load, and specific sliding velocity 
are assumed as 100% for comparison with other gear pairs. This type of gear 
profile is used in the aerospace industry because it provides better bending 
strength and flank surface endurance in comparison with the standard 20° 
pressure angle gears typical for commercial applications. Case 2 is the high 
32° pressure angle symmetric gears, optimized by the Direct Gear Design 
method. Its Hertzian contact stress is about 8% lower and its specific sliding 
velocity is about 6% lower than those for the baseline gear pair. This should 
provide better flank tooth surface pitting or scoring resistance. However, the 
bearing load is 7% higher.
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5.1.2.2  Case 3

These asymmetric gears are for mostly unidirectional load transmission with 
a 40° pressure angle driving tooth flanks providing 12% contact stress and 
25% sliding velocity reduction. At the same time, the contact stress and slid-
ing velocity of the coast flanks are close to these parameters of the baseline 
gears and should provide a tooth surface load capacity similar to that for the 
baseline gears. This type of gear may find applications for drives with one 
main load transmission direction, but it should be capable to carry a lighter 
load for shorter periods of time in the opposite load transmission direction.

5.1.2.3  Case 4

These asymmetric gears have a 46° drive pressure angle that allows reduc-
tion of the contact stress by 14% and sliding velocity by 32%. The disadvan-
tage of such gear teeth is a high (+30%) bearing load. These types of gears 
are only for unidirectional load transmission. Their 10° coast pressure angle 
flanks have insignificant load capacity. They may find applications for drives 
with only one load transmission direction that may occasionally have a very 
low load coast flank tooth contact, like in the case of a tooth bouncing in 
high-speed transmissions.

5.1.2.4  Case 5

These asymmetric gears have only driving tooth flanks with the extreme 
60° pressure angle with no involute coast tooth flanks at all. As a result, the 
bearing load is significant.

There are many applications, as described in a Case 3, where a gear pair 
transmits load in both load directions, but with significantly different mag-
nitude and duration (Figure  5.1). In this case, the asymmetry factor K for 
a gear pair is defined by equalizing potential accumulated tooth surface 
damage defined by operating contact stress and number of tooth flank load 
cycles. In other words, the contact stress safety factor SH should be the same 
for the drive and coast tooth flanks. This condition can be presented as

 SH
HPd

Hd

HPc

Hc
= =σ

σ
σ
σ

, (5.1)

where σHd and σHc are the operating contact stresses for the drive and coast 
tooth flanks, and σHPd and σHPc are the permissible contact stresses for the 
drive and coast tooth flanks that depend on the number of load cycles.

Then from (5.1)

 
σ
σ

σ
σ

Hd

Hc

HPd

HPc
= . (5.2)
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The contact stress at the pitch point [48] is

 σ ε βH H E
t

w w
z z z z

F
d b

u
u

= ±
1

1
, (5.3)

where

 zH
b wt

t wt
= 2

2

cos( )cos( )
cos( ) sin( )

β α
α α

is the zone factor that for the directly designed spur gears is

 zH
w

= 2
2sin( )α

; (5.4)

ZE is the elasticity factor that takes into account gear material properties 
(modulus of elasticity and Poisson’s ratio); Zε is the contact ratio factor, its 
conservative value for spur gears is Zε = 1.0; Zβ is the helix factor, for spur 
gears Zβ = 1.0; Ft is the nominal tangent load, which at the pitch diameter 

dw1 is F T
dt

w
= 2 1

1
; T1 is the pinion torque; bw is the contact face width; and + is for 

external gearing and – for external gearing.
Then for the directly designed spur gears the contact stress at the pitch 

point can be presented as

 σ
αH E

w w w
z

d
T

b
u

u
= ±2 2

2
1

1

1

sin( )
. (5.5)

T1c

T1d

dw2

αwc

αwd

dw1

FIGURE 5.1
Asymmetric gear pair, T1d and T1c, pinion torque applied to the drive and coast tooth flanks. 
(From Kapelevich, A.L., Gear Technology, June/July 2012, 48–51. With permission.)
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Some parameters of this equation, ZE, dw1, bw, and u, do not depend on the rota-
tion direction, and Equation (5.2) for the pitch point contact can be presented as

 
sin( )
sin( )

2
2

α
α

wc

wd
A= , (5.6)

where a parameter A is

 A
T
T

c

d

HPd

HPc
= 1

1

2( )
σ
σ

. (5.7)

According to [48], “the permissible stress at limited service life or the safety 
factor in the limited life stress range is determined using life factor ZNT.” This 
allows replacement of the permissible contact stresses in Equation (5.7) for 
the life factors

 A
T
T

Z
Z

c

d

NTd

NTc
= 1

1

2( ) . (5.8)

When parameter A is defined and the drive pressure angle is selected, 
the coast pressure angle is calculated by Equation (5.6) and the asymmetry 
 coefficient K from a common solution of (5.6) and (2.93):

 K
A wd

wd

=
+ −1 1 2

2

2 2(sin )

cos

α
α

. (5.9)

If the gear tooth is equally loaded in both the main and reversed load appli-
cation directions, then both the coefficient A and the asymmetry factor K are 
equal to 1.0 and gear teeth are symmetric.

Example 1
The drive pinion torque T1d is two times greater than the coast pin-
ion torque T1c. The drive tooth flank has 109 load cycles, and the coast 
tooth flank has 106 load cycles during the life of the gear drive. From 
the S-N curve [48] for steel gears an approximate ratio of the life factors 
ZNTd/ZNTc = 0.85. Then the coefficient A = 0.852/2 = 0.36. Assuming the 
drive pressure angle is αwd = 36°, the coast pressure angle from Equation 
(5.6) is αwc = 10° and the asymmetry factor from Equation (5.9) is K = 1.22.

In many unidirectional gear drives like in, for example, propulsion sys-
tem transmissions that seem irreversible, the coast tooth flanks are loaded 
because of the system inertia during the drive system deceleration or the tooth 
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bouncing in the high RPM drives. This coast tooth flank load can be significant 
and should be taken in consideration while defining the asymmetry factor K.

If the gear drive is completely irreversible and the coast tooth flanks never 
transmit any load (Case 4), the asymmetry factor is defined only by the drive 
flank geometry. In this case, increase of the drive flank pressure could be lim-
ited by a minimum selected contact ratio and a separating load applied to the 
bearings. Application of a very high drive flank pressure angle results in the 
reduced coast flank pressure angle and possibly its involute profile undercut 
near the tooth root. Another limitation of the asymmetry factor of the irre-
versible gear drive is growing compressive bending stress at the coast flank 
root. Usually for conventional symmetric gears compressive bending stress 
does not present a problem, because its allowable limit is significantly higher 
than for the tensile bending stress. However, for asymmetric gears it may 
become an issue, especially for gears with thin rims.

In the unidirectional chain gear drives (Figure 5.2), the idler gear transmits the 
same load by both tooth flanks. This arrangement seems unsuitable for asym-
metric gear application. However, in many cases, the idler’s mating gears have 
significantly different numbers of teeth. This allows equalizing contact stresses 
on opposite flanks of the asymmetric teeth to achieve maximum load capacity.

Equation (5.5) is used to define the pitch point contact stress in the 
pinion/idler gear mesh,

 σ
αH E

w w w
z

d
T

b
u

u
12

1

1

12 12

12

12

2 2
2

1= +
sin( )

, (5.10)

αw23

T2

T1

1

2
3

αw12

dw2
dw3

dw1

FIGURE 5.2
Chain gear arrangement: 1 - input pinion; 2 - idler gear; 3 - output gear. (From Kapelevich, A.L., 
Gear Technology, June/July 2012, 48–51. With permission.)
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and in the idler/output gear mesh,

 σ
αH E

w w w
z

d
T

b
u

u
23

2

2

23 23

23

23

2 2
2

1= +
sin( )

, (5.11)

or, ignoring gear mesh losses,

 σ
αH E

w w w
z

u d
u T

b
u

u
23

12 1

12 1

23 23

23

23

2 2
2

1= +
sin( )

, (5.12)

where bw12 and bw23 are the contact face widths in the pinion/idler gear and the 
idler/output gear meshes, accordingly; u12 = z2/z1 is the gear ratio in the pin-
ion/idler gear mesh; u23 = z3/z2 is the gear ratio in the idler/output gear mesh; 
and z1, z2, and z3 are the number of teeth of the input, idler, and output gears.

Numbers of the idler gear tooth load cycles and permissible contact stresses 
in this case are equal in both meshes, and Equation (5.2) can be presented as 
σH12 = σH23. Then considering that all gears are made from the same material, 
the idler gear pressure angle ratio is defined by
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is a parameter that reflects the gear ratios u12 and u23, and contact face widths 
bw12 and bw23 in the pinion/idler gear and idler/output gear meshes, accordingly.

Then considering Equation (2.93) the asymmetry factor K can be presented as

 K
B wd

wd

=
+ −1 1 2

2

2 2(sin )

cos

α
α

. (5.15)

If z1 = z3 and bw12 = bw23, then both the coefficient B and the asymmetry 
 factor K are equal to 1.0 and gear teeth are symmetric. If z1 ≠ z3 or bw12 ≠ bw23, 
application of asymmetric gears can be considered.

Example 2
The pinion number of teeth is n1 = 9, the idler gear number of teeth is 
n2 = 12, the output gear number of teeth is n3 = 20, the contact face width 
ratio is bw12/bw23 = 1.2. This makes parameter B = 0.82. Then assuming the 
pinion/idler gear mesh pressure angle is αw12 = 35°, the idler/output pres-
sure angle from (5.13) is 25.32° and the asymmetry factor from Equation 
(5.15) is K = 1.10.
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Similarly, the contact stress equalization technique can be applied for the 
unidirectional epicyclic gear stage (Figure 5.3), because the planet gear can 
be considered as the idler gear engaged with the sun gear and ring gear.

In this case, the asymmetry factor K is also defined by Equation (5.15), 
where parameter B is

 B
b
b

u
u u

w

w
= −

+
12

23

23

23 12

1
1( )

, (5.16)

bw12 and bw23 are the contact face widths of the sun/planet gear and planet/ring 
gear meshes; u12 = z2/z1 is the gear ratio in the sun/planet gear mesh; u23 = z3/z2 

is the gear ratio in the planet/ring gear mesh; and z1, z2, and z3 are the number 
of teeth of the sun, planet, and ring gears.

In a typical epicyclic gear stage z2 = (z3 – z1)/2. This allows simplification 
of Equation (5.16):

 B
b

u b
w

w
= 12

13 23
, (5.17)

where u13 = z3/z1 is the epicyclic stage gear ratio. This gear ratio is always 
greater than 1.0, which makes an epicyclic gear stage suitable for asymmetric 
gear application.
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FIGURE 5.3
Planetary gear arrangement: 1 - sun gear; 2 - planet gear; 3 - ring gear. (From Kapelevich, A.L., 
Gear Technology, June/July 2012, 48–51. With permission.)
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Example 3
The sun gear number of teeth is n1 = 9, the planet gear number of teeth 
is n2 = 12, the output gear number of teeth is n3 = 33, and the contact face 
width ratio is bw12/bw23 = 1.8. This makes parameter B = 0.49. Then assum-
ing the pinion/idler gear pressure angle is αw12 = 40°, the idler/output 
pressure angle from (5.13) is 14.5° and the asymmetry factor from 
Equation (5.15) is K = 1.26.

5.1.3  Mesh Efficiency Maximization

Gear mesh power losses depend on the gear tooth geometry and friction coef-
ficient. For spur gears, the percent of mesh losses is defined in Equation (3.27). 
Maximum gear mesh efficiency (minimum of mesh losses) is achieved if the 
specific sliding velocities at the start of the approach action and at the end of the 
recess action are equalized: H = Hs = Ht. Then Equation (3.27) can be presented as

 P
fH

t
w

=
50

cos α
. (5.18)

If this equation is solved with Equations (2.75), (2.76), (3.30), and (3.31) the 
mesh power loss percent for spur gears can be defined as

 P f
z z

t = ±50
1 1

1 2
πεα ( ) , (5.19)

and the maximized gear mesh efficiency as

 E P f
z z

tmax ( )= − = − ±100 100 50
1 1

1 2
πεα , (5.20)

where (in Equations (5.20), (5.21), and (5.22)) signs ± are for external gears and 
internal gears, respectively.

Equation (5.20) indicates that for spur gears the optimized maximum 
efficiency gear geometry depends only on the type of gearing (external or 
 internal), numbers of teeth, and transverse contact ratio εα. For helical gears 
the mesh power losses are [38]
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With the optimized gear geometry they are

 P f
z z

t w= ±50
1 12

1 2
πε βα cos ( ) . (5.22)

The maximum gear mesh efficiency of the spur gears is limited by the 
minimum transverse contact ratio εα = 1.0. Helical gears make it possible 
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to increase the gear mesh efficiency by reducing εα < 1.0 and increasing the 
operating helix angle βw, although such gear geometry might not be practical 
for many gear applications.

5.2  Tooth Modeling and Bending Stress Calculation

The gear design standards [48, 49] recommend calculating the nominal 
tooth root bending stress using the analytical Lewis equation [50], although 
Method A of the International Organization for Standardization (ISO) stan-
dard [48] allows for use of numerical calculation methods: “finite element 
analysis, integral equations, conformal mapping procedures, …, etc.” These 
numerical methods are more suitable for Direct Gear Design, because the 
Lewis equation-based method may not be sufficient for a broad variety of its 
possible tooth profile configurations, including asymmetric ones.

Examples of the two-dimensional (2D) finite element analysis (FEA) tooth 
mesh models and stress isograms are shown in Figures 5.4 and 5.5. Here the 
triangle linear finite elements are used, although other kinds of finite ele-
ments can be used for this purpose.

An area at the fillet profile, where high stress is expected, has a higher 
finite element node density and the elements are smaller than in the rest of 
the tooth profile to achieve a more accurate stress calculation result within a 
short period of time. For conventional gears with the transverse contact ratio 
1.0 < εα < 2.0 a force is initially applied at the highest point of single-tooth 
contact, and for the HCR gears with the transverse contact ratio εα ≥ 2.0 a 
force is applied at the highest point of double-tooth contact. Typically the 
force application point is located between two finite element nodes. In this 
case the force is replaced with two force components applied to these two 
closest nodes. A sum of the node-applied forces is equal to the initial force, 
and their values are defined in inverse proportion to the distances from the 
initial force application point to the loaded finite element nodes.

Figure 5.6 presents a typical stress distribution along the whole tooth pro-
file with the conventional (not optimized) trochoidal fillet from the finite 
element nodes 1 to n. Figure 5.7 presents the asymmetric tooth FEA mesh 
model and stress isograms.

5.3  Root Fillet Optimization

Historically gear tooth geometry improvement efforts were concentrated on 
the involute flanks. Although the gear tooth root fillet is an area of maximum 
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bending stress concentration, its profile and accuracy are  marginally defined 
on the gear drawing by typically very generous root diameter tolerance and, 
in some cases, by the minimum fillet radius, which is not easy to accurately 
inspect. In fact, tooth bending strength is usually provided by material 
and heat treatment improvement rather than gear geometry enhancement. 
The gear tooth root fillet profile is typically a trochoidal curve determined 
by the generating tool (gear hob or shaper cutter, for example) tooth tip 
trajectory (Figure 5.8).

The cutter tooth parameters, such as the profile (pressure) angle, adden-
dum, and whole depth, are designed to generate, first of all, the involute 
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FIGURE 5.4
FEA tooth models: (a) with solid gear body, (b) with thin rim. F - applied force; n - number of 
FEA nodes on the tooth profile.
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tooth flank profile. But the root fillet profile is basically a by-product of the 
cutter edge motion. The fillet profile and, as a result, bending stress level are 
dependent on the cutter radial clearance and tip radius. The standard radial 
clearance usually is (0.20 – 0.35) × m or (0.20 – 0.35)/DP, where m is a module 
and DP is a diametral pitch. The standard cutter tooth radius for the coarse 
pitch gears is 0.30 × m or 0.30/DP. For fine pitch gears the standard cutter 
tooth radius may not be specified and could be equal to zero [38].

Unlike the contact Hertz stress, the bending stress typically does not 
define the major gear pair dimensions such as pitch diameters or center 
distance. If the calculated bending stress is unacceptably high, the coarser 
diametral pitch (larger module) can be applied. The number of teeth, in this 
case, is proportionally reduced to keep original pitch diameters and center 
distance, and the same (or close) gear ratio. This makes the gear tooth larger 

F
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FIGURE 5.5
Stress isograms: (a) with solid gear body, (b) with thin rim.
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and reduces bending stress to an acceptable level, although this increases 
tooth stiffness and specific sliding velocity, and reduces gear mesh efficiency.

There are two general approaches for reducing bending stress for the 
given tooth size. One of them is to alter the generating cutter tooth tip profile 
[51, 52]. The most common application of such an approach is the tooling rack 
with the full tip radius. Another approach is to alter the gear tooth fillet pro-
file [53–56]. The most common application of such an approach is using the 
circular arc root fillet profile. Further development of both these approaches 
is based on a mathematical function fitting technique where the cutter tip 
radius or the gear tooth trochoid fillet profile is replaced by a parabola, ellip-
sis, chain curve, or other curve, reducing the bending stress. Bending stress 
reduction achieved by these fillet profile improvement methods varies greatly 
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Stress distribution along the tooth profile.
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FIGURE 5.7
Asymmetric tooth FEA: (a) mesh model, (b) stress isograms.
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depending on the cutter and/or gear mesh parameters. The resulting tooth 
fillet profile must be checked for interference with the mating gear tooth tip.

5.3.1  Root Fillet Optimization Method

In Direct Gear Design the tooth fillet is designed after the involute flank 
parameters are completely defined. A goal is to achieve a minimum of stress 
concentration on the tooth fillet profile. In other words, the maximum bend-
ing stress should be evenly distributed along the large portion of the root 
 fillet profile. The initial fillet profile is a trajectory of the mating gear tooth tip 
in the tight (zero-backlash) mesh. This allows interference with the  mating 
gear tooth tip to be avoided.

The fillet optimization method that is used in Direct Gear Design was devel-
oped by Dr. Y.V. Shekhtman [57, 58]. It utilizes the following calculation processes:

•	 Definition of a set of mathematical functions that are used to describe 
the optimized fillet profile. Such a set may contain the trigonometric, 
polynomial, hyperbolic, exponential, and other functions and their 
combinations. Parameters of these functions are defined during the 
optimization process.

•	 FEA with the triangle linear elements is used to calculate stress. 
This kind of finite element allows achievement of satisfactory opti-
mization results within reasonable time. In [59] the boundary ele-
ment method (BEM) is used for stress analysis of the optimized 
tooth root fillet.
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C

r 2 1

H

α

FIGURE 5.8
Gear tooth fillet generation by the rack cutter (gear hob). 1 - cutter tooth tip; 2 - gear tooth 
root  fillet; α - rack profile (pressure) angle; H - whole depth; Ha - addendum; C, radial clear-
ance; r  - cutter tip radius. (From Kapelevich, A.L., and Y.V. Shekhtman, Gear Technology, 
September/October 2009, 73–79. With permission.)



140 Direct Gear Design

© 2008 Taylor & Francis Group, LLC

•	 A random search method [60] is used to define the next step in the 
multiparametric iteration process of the root fillet profile optimization.

This fillet optimization method establishes the approximate fillet center 
(Figure 5.9). It is defined as the center of the best-fitted circular arc, and it is 
connected to the finite element nodes located on the initial fillet profile [57, 
58]. The first and last finite element nodes of the initial fillet profile located on 
the form diameter circle cannot be moved during the optimization process. 
The rest of the initial fillet finite element nodes are moved along the straight 
lines (beams) that connect through the fillet center. The bending stresses are 
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FIGURE 5.9
Tooth fillet profile optimization: (a) symmetric tooth fillet, (b) asymmetric tooth fillet. 
1  -  involute tooth flanks; 2 - initial fillet profile; 3 - fillet center; 4 - optimized fillet  profile; 
df, dfd, dfc  - form circle diameter of symmetric tooth, and drive and coast flanks of asym-
metric tooth, accordingly. ((a) from Kapelevich, A.L., and Y.V. Shekhtman, Gear Technology, 
September/October 2009, 73–79. With permission.)
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calculated for every fillet profile configuration iteration. Variable  parameters 
of mathematical functions that describe the fillet profile for the next iteration 
are defined depending on stress calculation results of the previous  iteration. 
If  it provided stress reduction, the optimization process moves the fillet 
nodes along their beams in the same direction. If stress was increased, the 
nodes are moved in the opposite direction. After the specified number of 
iterations the optimization process stops, resulting in the optimized fillet 
profile. The more finite element nodes that are placed on the fillet profile, the 
more accurate are the stress calculation results, but this requires more itera-
tions and the  fillet profile optimization takes more time. During the optimi-
zation process the fillet nodes cannot be moved inside the initial fillet profile 
because this may cause interference with the mating gear tooth tip. This is 
a main constraint for fillet optimization, although there are other possible 
additional constraints (Figure 5.10). One of them is a minimum radial clear-
ance. The optimized fillet typically results in low radial clearance, much less 
than in conventional standard or custom gear drives. The concern here is that 
the radial clearance can be so small that the lubricant could be trapped in the 
fillet space, resulting in additional power losses and gear efficiency reduc-
tion. In this case, the root diameter providing the acceptable radial clear-
ance should be established and the optimized fillet profile must be tangent to 
this root diameter. Another such constraint is the thin gear rim (Figures 5.4b 
and 5.5b). In this case, the optimized fillet profile and maximum root stress 
depend on the rim thickness and type of the gear rim design. There are 
three different rim design options that can be considered. The first is a “free” 
rim support with its possible radial deflection. This is typical for idler gears 
when the rim surface is used as the roll (or ball) bearing race, or for gears 
with the spokes connecting the rim with the hob. The second option of rim 
design is typical for gears that have the sliding fit or the glue fit on the rim 
surface with very small clearance. This restrains the rim radial deflections, 
but does not  create additional hoop stress. The third type of rim design is 
a press (or heat) fit. It imposes additional hoop stress depending on press 
fit interference. If press fit interference is significant or rim thickness is low, 
resulting in high hoop stress, the root fillet optimization may not be possible. 
One more additional fillet optimization constraint is related to manufactur-
ability of the gears with the optimized fillet. It is typical for external gears 
with a low (<20) number of teeth. The fillet optimization process tries to cre-
ate minimum curvature (maximum radius) at the maximum stress fillet area 
to minimize its concentration. For gears with a low number of teeth this may 
result in a small fillet radius near the form diameter creating the undercut. 
Unlike the undercut that occurs in conventional gears, this one is made for 
a purpose, and it does not affect the active involute flank profile. However, 
to make such an optimized fillet profile could be difficult or even impos-
sible by some gear fabrication methods, such as profile cutting, hobbing, etc. 
In order to make the root fillet profile manufacturable using these fabrication 
methods, the fillet profile undercut should be limited or eliminated. This 
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constrains the angle φ (Figure 5.10) between tangents to the initial and opti-
mized fillet profiles at their beginning and endpoints. These additional fillet 
optimization constraints compromise root stress concentration reduction in 
comparison to the optimized fillet constrained only by the initial fillet pro-
file. Figure 5.11 presents the gear tooth stress distribution comparison before 
and after root fillet optimization.

φ

1

tr

dh

dr

df
C

3
2

φ

(a)

φ
φ

2 3
C

1

dr

df

dh tr

(b)

FIGURE 5.10
Tooth fillet optimization constraints (dashed lines): (a) external gear fillet, (b) internal gear  fillet. 
1 - involute tooth flanks; 2 - initial fillet profile; 3 - optimized fillet profile; df - form circle diam-
eter; dr - specified root diameter; dh - rim diameter; C - radial clearance; tr - rim thickness.
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5.3.2  Fillet Optimization Analysis

Figure 5.12 presents a comparison of different tooth root fillet profile options. 
The involute flanks, face widths, tooth load, and its application point are the 
same for all fillet profile options. Results of the FEA stress calculation along 
with other root fillet parameters are shown in Table 5.3. Calculation results 
for fillet profile option 1 generated by the standard 20° pressure angle rack 
profile are considered the 100% benchmark values. Parameters of other fillet 
profile options are defined relative to the option 1 parameters.

Root fillet profile comparison results presented in Table 5.3 indicate consid-
erable root stress concentration reduction provided by the fillet optimization. 
At the maximum tensile stress point the optimized fillet has a significantly 
larger fillet radius Rf, and a smaller distance H and root clearance C. It has the 
lowest maximum bending stress, which is evenly distributed along the large 
portion of the fillet profile. Other fillet profiles have significantly greater and 
sharply concentrated maximum stress.

Analysis of the fillet optimization results has indicated that the optimized 
fillet profile practically does not depend on the force value and its application 
point on the involute flank, except in the case where the application point is 
located very close to the form diameter. In this case, compression under the 
applied force may affect the optimized fillet profile. Such load application 
should not be considered for fillet optimization, because it induces minimal 
tensile stress in the root fillet in comparison to other load application points 
along the tooth flank. The gears with the optimized root fillets are shown in 
Figure 5.13.
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FIGURE 5.11
Tooth profile stress distribution charts before (1) and after (2) root fillet optimization. ΔσF -  tensile 
stress reduction; ΔσFc - compressive stress reduction.
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FIGURE 5.12
Root fillet comparison: (a) gear tooth with different fillet profiles, (b) stress chart along the 
 fillet. 1 - fillet profile generated by the standard coarse pitch rack with the tip radius 0.3m 
(or 0.3 DP); 2 - fillet  profile generated by the standard fine diametral pitch rack with the tip 
radius equal to zero; 3  - fillet profile generated by the full tip radius rack; 4 - circular fillet 
profile; 5 - optimized fillet profile; 6 - trajectory of the mating gear tooth tip in tight (zero back-
lash) mesh; F - applied load; H - radial distance between load application and maximum stress 
points; C - radial clearance; Rf - fillet curvature radius at the maximum stress point; σF - tensile 
stress. (From Kapelevich, A.L., and Y.V. Shekhtman, Gear Technology, September/October 2009, 
73–79. With permission.)
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5.3.3  Benefits of Fillet Optimization

A goal and main benefit of the root fillet optimization is the bending stress 
concentration reduction. If the load capacity of gears with conventional 
( trochoidal or circular) root fillet profiles is limited by maximum tooth 
bending stress, fillet profile optimization increases gear load capacity pro-
portionally to the bending stress reduction. However, quite often, gear load 
capacity, and consequently possible gear drive size and weight reduction, 
is limited by the tooth surface durability defined by pitting and scuffing 
resistance, which greatly depends on the contact stress, profile sliding, and 
contact (flash) temperature. Then potential bending stress reduction pro-
vided by the fillet optimization can be used to improve other gear drive 
performance parameters.

Figure 5.14 presents the charts of the bending and contact stresses (dashed 
curve), calculated for the gear pairs with the standard involute profiles. 
These gear pairs contain identical mating gears that make a gear ratio u = 1.0. 
They all have the same center distance aw = 60 mm, and the face width of 

FIGURE 5.13
Gears with the optimized root fillets. (From Kapelevich, A.L., and Y.V. Shekhtman, Gear 
Technology, September/October 2009, 73–79. With permission.)

TABLE 5.3

Fillet Profile Comparison (Figure 5.12)

Rack with 
Tip Radius 

R = 0.3m

Rack with 
Tip Radius 

R = 0

Rack with 
Full Tip 
Radius

Circular 
Fillet 

Profile
Optimized 

Fillet

Fillet Profile No. 1 2 3 4 5
Rf, % 100 58 118 121 273
H, % 100 103 100 88 82
C, % 100 100 118 79 76
σFmax, % 100 119 90 88 78
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each gear is b = 10 mm. Applied driving torque is T = 50 Nm. The number of 
teeth varies from 12 to 75, and module varies accordingly from 5 to 0.8 mm 
to keep the constant center distance. The bending stresses are presented in 
two charts: The top one is for the gears with the standard (generated by 
20° pressure angle rack) trochoidal fillet profiles, and the bottom one is for 
the same gears but with the optimized fillet profiles. For example, the bend-
ing stress level of 180 MPa is considered acceptable. This level is achievable 
for the 20-tooth gears with the standard fillet or for the 28-tooth gears (with 
lower module) with the optimized fillet. However, the 28-tooth gear pair has 
a higher contact ratio and, as a result, lower contact stress. The root fillet 
optimization allows trading of potential 24% bending stress reduction for 
6% contact stress reduction by using the gears with a greater number of teeth 
and lower module. This 6% contact stress reduction could be used to increase 
gear drive life or for its size and weight reduction.

Similarly, the fillet optimization that makes it possible to increase the 
number of teeth and reduce their module allows reduction of specific sliding  
velocities (Figure  5.15), because the tooth addendum and tooth tip profile 
angles, in this case, are also reduced. This also leads to increased mesh effi-
ciency (Figure  5.16), and reduced contact (flash) temperature (Figure  5.17) 
and scuffing probability (Figure 5.18).*

* Calculations of the contact (flash) temperature and scuffing probability were done using 
the mesh scuffing risk analysis subroutine of the GearWin software package developed by 
Charles E. Long.
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FIGURE 5.14
Conversion of potential bending stress reduction into contact stress reduction. (From 
Kapelevich, A.L., and Y.V. Shekhtman, Gear Technology, September/October 2009, 73–79. 
With permission.)
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Potential benefits of the bending stress concentration reduction by the tooth 
fillet profile optimization can be extended. For example, this also allows use of 
gears with a greater number of teeth and lower module for noise and vibration 
reduction and allows increase of the elastohydrodynamic lubricant (EHL) film 
thickness also because of the reduced flash temperature and profile sliding.
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FIGURE 5.15
Conversion of potential bending stress reduction into specific sliding reduction.
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Conversion of potential bending stress reduction into increased gear mesh efficiency. 
(From Kapelevich, A.L., and Y.V. Shekhtman, Gear Technology, September/October 2009, 73–79. 
With permission.)
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FIGURE 5.17
Conversion of potential bending stress reduction into contact (flash) temperature reduction.
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5.4  Bending Strength Balance

The mating gears typically have different tooth shapes and face widths, 
and they could be made out of different materials, have different heat treat-
ments, etc. In order to provide equally strong teeth of a pinion and gear, 
their maximum bending stress should be balanced or safety factors should 
be  equalized [57]. This balance condition can be presented as

 σ σ δF b F FCmax max1 2− ≤ , (5.23)

where σFmax1 and σFmax2 are maximum bending stresses in the fillet area of 
the pinion and the gear, Cb is the bending stress balance coefficient reflecting 
the difference in material properties and in a number of tooth load cycles for 
the pinion and the gear that defined their allowable bending stresses, and δF 
is the permissible stress balance tolerance (typically less than 2–3%). Direct 
Gear Design uses the stress balance approach that utilizes a combination of 
an iteration method with the FEA stress calculation to satisfy the bending 
stress balance condition (5.23) by adjusting the tooth thickness ratio:

 C S Stt w w= 1 2/ , (5.24)

where Sw1 and Sw2 are tooth thicknesses on operating pitch diameters (Figure 5.19). 
This bending stress balance procedure should work in  combination with the 
tooth profile and root fillet optimization.

b2

b1

T1

Sw2

Sw1

Smax2

Smax1

FIGURE 5.19
Bending stress balance. (From Kapelevich, A.L., and Y.V. Shekhtman, Gear Technology, 
September/October 2003, 45. With permission.)
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5.5  Final Stress Definition

After the tooth geometry of mating gears is finalized the nominal bending 
and contact stresses are defined considering the tooth deflection under the 
applied load. In this case, the tooth load value is defined at different contact 
points of the involute tooth flank. Positions of these points are affected by 
the tooth bending deflection and the contact deflection of the involute flank. 
The FEA models of mating gears loaded by the driving torque at different 
angular positions allow load and stress distributions to be defined during 
the tooth pair engagement. Gear material properties like modulus of elastic-
ity and Poisson ratio are used for deflection calculations. The FEA proce-
dure defines bending stress. The Hertz equation is used for contact stress 
definition. This approach allows maximum contact and bending stresses to 
be defined. Typical charts of the driving gear tooth load, and contact and 
bending stress distribution along the involute tooth profile are presented in 
Figures 5.20 to 5.22 for conventional (a) and HCR (b) gears.

Conventional spur gears with the contact ratio 1.0 < εα ≤ 2.0 have three 
tooth engagement phases:

•	 Two-pair contact near the driving gear tooth root when a tooth load 
is partially shared with the previous tooth pair

•	 One-pair contact near the middle section of a tooth when a full load 
is taken by the engaged pair of teeth

•	 Two-pair contact near the driving gear tooth tip when a tooth load is 
partially shared with the following tooth pair

The HCR spur gears with the contact ratio εα > 2.0 have five tooth engage-
ment phases:

•	 Three-pair contact near the driving gear tooth root when a tooth 
load is partially shared with two previous tooth pairs

•	 Two-pair contact between the tooth root and the middle of the tooth 
when a tooth load is partially shared with the previous tooth pair

•	 Three-pair contact in a middle of the tooth when a tooth load is par-
tially shared with one previous tooth pair and another following 
tooth pair

•	 Two-pair contact between a middle of the tooth and the tooth tip 
when a tooth load is partially shared with one following tooth pair

•	 Three-pair contact near the driving gear tip of the tooth when a 
tooth load is partially shared with two following tooth pairs



151Tooth Geometry Optimization

© 2008 Taylor & Francis Group, LLC

Figures 5.20 to 5.22 have graphs that are defined considering the mating 
gear tooth deflections. Manufacturing tolerances, assembly misalignments, 
other gear drive components’ (housing, shafts, bearings, etc.) deflections, 
and operating conditions (temperature, humidity, etc.) also affect the gear 
tooth load and stress distribution.
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�ree pair mesh

(b)

FIGURE 5.20
Tooth load distribution: (a) for conventional gears, (b) for HCR gears. Rp1 and Ra1 are radii at 
beginning and end of driving gear tooth engagement in contact with driven gear tooth.
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FIGURE 5.21
Contact stress distribution: (a) for conventional gears, (b) for HCR gears.
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FIGURE 5.22
Bending stress distribution: (a) for conventional gears, (b) for HCR gears.
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6
Gear Design Details

This chapter addresses various specific tasks of gear design, such as trans-
mission density maximization, achieving high gear ratio in the planetary 
drives, self-locking gear design, some plastic gear design issues, and tooth 
modeling technique.

6.1  Gear Transmission Density Maximization

Maximization of the gear transmission density allows the output torque to 
be increased within given gear drive dimensional constraints or to reduce 
gear drive size and weight with a given output torque to be reduced. Size 
and weight reduction often also accompanies cost reduction.

This chapter presents an approach that allows optimizing gearbox kinematic 
arrangement and gear tooth geometry to achieve high gear transmission den-
sity. This approach uses dimensionless gearbox volume functions, which can 
be minimized by the gear drive internal gear ratio optimization [61].

6.1.1  Introduction of Volume Function

Load capacity or transmission density is defined by the gear tooth working 
flank surface durability that is limited, as a rule, by allowable contact stress 
level. For a pair of mating gears the gear transmission density coefficient Ko 
(also known as the K-factor) [5, 38] is

 K
T

d b
u

u
o

w w
= ×

×
× ±2 11

1
2 , (6.1)

where T1 is the driving pinion torque, dw1 is the pinion operating pitch diam-
eter, bw is the effective gear face width in mesh, u = z2/z1 is the gear pair ratio, 
z1 is the driving pinion number of teeth, z2 is the driven gear number of teeth, 
+ is for external gear mesh, and – is for internal gear mesh.

The gear pair transmission density coefficient Ko statistically varies about 
0.5–4.0 MPa for commercial drives and about 4.0–12.0 MPa for more demand-
ing applications such as aerospace, racing, and automotive drives. So a 
wide range of Ko can be explained by the gear drive design (arrangement, 
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materials, heat treatment, lubrication, etc.), its application, operating condi-
tions, and performance priorities, which may include size and weight, reli-
ability, life, cost, noise and vibration, and many other characteristics. The 
gear pair volume definition is illustrated in Figure 6.1.

Weight of the pinion can be presented as

 w V Kv1 1 1= × ×ρ , (6.2)

bw

dw2 dw1

(a)

dw2

dw1

bw

(b)

FIGURE 6.1
Gear pair volume definition: (a) external gearing, (b) internal gearing. (From Kapelevich, A.L., 
and V.M. Ananiev, Gear Technology, November/December 2011, 46–52. With permission.)
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where ρ is the material density, Kv1 is the volume utilization coefficient of the 
pinion (a ratio of the pinion volume to its operating pitch cylinder volume), 
and V1 is the operating pitch cylinder volume, which is equal to

 V d bw w1 1
2

4
= × ×π

, (6.3)

which, considering Equation (6.1), also can be presented as

 V
T
K

u
uo

1
1

2
1= × × ±π

. (6.4)

The operating pitch cylinder volume of the mating gear is

 V d b u Vw w2 2
2 2

1
4

= × × = ×π
, (6.5)

where dw2 is the gear operating pitch diameter.
Assuming identical material density of both mating gears, the total weight 

of a gear pair is

 w w w V K V Kv v= + = × × + ×1 2 1 1 2 2ρ ( ) , (6.6)

where Kv2 is the volume utilization coefficient of the mating gear.
The volume utilization coefficients Kv1 and Kv2 depend on the gear body shape 

(solid body or with central or lightening holes, rim, web, spokes, etc.). Their 
values for driving pinions (sun gears) statistically vary in a range of 0.8–1.0; 
for driven (or planet) gears, 0.3–0.7, and for internal (or ring) gears, 0.05–0.1.

Then applying (6.5) the gear pair weight is

 w V K u Kv v= × × + ×ρ 1 1
2

2( ) , (6.7)

or with (6.4),

 w
T
K

F
o

v= × × ×ρ π
2

1 , (6.8)

where Fv is the dimensionless volume function.
For the cylindrical pair of gears the volume function is

 F F F
u

u
K u Kv v v v v= + = ± × + ×1 2 1

2
2

1
( ) , (6.9)
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where

 F
u

u
Kv v1 1

1= ± ×  (6.10)

is the pinion volume function, and

 F u u Kv v2 21= ± × ×( )  (6.11)

is the mating gear volume function.
The epicyclic gear stage volume definition is illustrated in Figure 6.2. In 

this case the subscript indexes 1, 2, and 3 are related to the sun gear, planet 
gear, and ring gear, respectively.

Operating pitch cylinder volume of the sun gear is defined by Equation 
(6.4) with the + sign, because the sun gear is in the external mesh with the 
planet gear. The planet gear operating pitch cylinder volume is defined by 
Equation (6.5). The operating pitch cylinder volume of the ring gear is

 V d b p V Kw wi bw3 3
2 2

1
4

= × × = × ×π
, (6.12)

where dw3 is the ring gear operating pitch diameter, Kbw = bwi/bwe is the effec-
tive gear face width ratio in the epicyclic gear stage, bwe is the effective gear 
face width in the sun/planet gear mesh, bwi is the effective gear face width in 
the planet/ring gear mesh, p = z3/z1 is the ring/sun gear ratio in the epicyclic 
stage, and z3 is the ring gear number of teeth.

dw1
dw3

bwe

dw2

bwi

FIGURE 6.2
Epicyclic gear stage volume definition. (From Kapelevich, A.L., and V.M. Ananiev, Gear 
Technology, November/December 2011, 46–52. With permission.)
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Unlike the convex-convex sun/planet gear mesh tooth flank contact, the 
planet/ring gear mesh has the convex-concave tooth flank contact, resulting 
in significantly lower contact stress. This allows reducing the effective gear 
face width in the planet/ring gear mesh to achieve a similar level of contact 
stress as in the sun/planet gear mesh. This makes the effective gear face 
width ratio Kbw < 1.0. Typically it is 0.7–0.9.

Assuming the same density material for all gears, the total weight of gears 
in the epicyclic gear stage is

 w w n w w V K n V K V Kp v p v v= + × + = × × + × × + ×1 2 3 1 1 2 2 3 3ρ ( ) , (6.13)

where Kv3 is the volume utilization coefficient of the ring gear, and np is the 
number of planet gears.

Applying Equations (6.5) and (6.12) the total weight is

 w V K u n K p K Kv p v v bw= × × + × × + × ×ρ 1 1
2

2
2

3( ) . (6.14)

Then considering Equation (6.4) the epicyclic gear stage volume function is
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where
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u
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Kve

p
v1 1

1= +
×

×  (6.16)

is the sun gear volume function,

 F
u
n

u Kve
p

v2 2
1= + × ×  (6.17)

is the planet gear volume function, and
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u

u n
p K Kve

p
v bw3

2
3

1= +
×

× × ×  (6.18)

is the ring gear volume function.
The more planet gears in the epicyclic gear stage, the lower its volume 

function and more compact the gear stage.
When the input torque and gear ratio are given and the gear transmission 

density coefficient Ko is selected according to the application, volume func-
tions allow estimating the size and weight of the gearbox at a very preliminary 
stage of design for different gear arrangement options.
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6.1.2  Volume Functions for Two-Stage Gear Drives

6.1.2.1  External Gear Arrangement

Figure 6.3 presents the two-stage gear drive arrangements with one (b) and 
two (c) load transmission branches.

Their total gear ratio is

 u u ut
I II= × , (6.19)

where indexes I and II are for the first and second stages, accordingly.

z1´

z2˝

Input
Shaft

z1˝

z2´
Output
Shaft
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n1´
n2´

n2˝

(b)

z2´

z2˝

z1˝ z1˝

z2´
z1´

(c)

FIGURE 6.3
(a) Two-stage external gear train, (b) one-transmission-branch arrangement, (c) two-trans-
mission-branch arrangement. (From Kapelevich, A.L., and V.M. Ananiev, Gear Technology, 
November/December 2011, 46–52. With permission.)
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The volume function for such arrangements is
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u
u K1

2+ × ) , (6.20)

where Kv3 is the volume utilization coefficient of the sun gear, and nb is the 
number of transmission branches.

6.1.2.2  Epicyclic Star Arrangement

The two-stage epicyclic star gear arrangement is shown in Figure 6.4. This 
gear arrangement provides a more compact and lighter gear drive in com-
parison with the gear arrangements shown in Figure 6.3, because the num-
ber of transmission branches (planet gears) per stage is typically three or 
more, and also because of internal gear meshes of planet and ring gears. The 
planet (idler) gears in this arrangement are rotated around their stationary 
axis. A total gear ratio is

 u p pt
I II= × . (6.21)

The volume function for this arrangement is

 F F p Fv ve
I I

ve
II= + × . (6.22)

z2́

z3́

z1́

Input
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Output
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z2̋
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FIGURE 6.4
Two-stage epicyclic star gear arrangement. (From Kapelevich, A.L., and V.M. Ananiev, Gear 
Technology, November/December 2011, 46–52. With permission.)
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6.1.2.3  Epicyclic Planetary Arrangement

This epicyclic planetary gear arrangement (Figure 6.5) is more compact than the 
star one (Figure 6.4), because the planet gears are installed on the carrier and 
involved in the planetary motion around the sun gear. The total gear ratio is

 u p pt
I II= + × +( ) ( )1 1 . (6.23)

The volume function for this arrangement is

 F F p Fv ve
I I

ve
II= + + ×( )1 . (6.24)

6.1.2.4  Epicyclic Split Power Arrangement

The split power arrangement [62] is shown in Figure 6.6. The first stage is 
differential. The second stage has the star arrangement. A part of the trans-
mitted power goes from the first-stage carrier directly to the output shaft 
bypassing the second stage. The rest of the transmitted power goes from 
the first-stage ring gear to the second-stage sun gear, and then through the 
 planets to the second-stage ring gear that is also connected to the output 
shaft. This allows reduction of the size and weight of the second stage and 
makes a gearbox even more compact and lighter than a gearbox with the 
planetary arrangement (Figure 6.5). The total gear ratio is

 u p p pt
I I II= + + ×1 . (6.25)
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z1́

z3̋
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FIGURE 6.5
Two-stage epicyclic planetary gear arrangement. (From Kapelevich, A.L., and V.M. Ananiev, 
Gear Technology, November/December 2011, 46–52. With permission.)
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The volume function for this arrangement is

 F F
p

p
Fv ve

I
I

I ve
II= +

+
×

1
. (6.26)

6.1.3  Internal Gear Ratio Optimization

The internal gear ratio distribution for multistage gearboxes can be opti-
mized to achieve the minimum of the volume function [63]. For the two-stage 
gearboxes a minimum of the volume function Fv = f(uI, uII) is achieved when 
the first derivatives d(Fv)/d(uI) and d(Fv)/d(uII) are equal to zero.

Figure 6.7 presents a chart of the volume function vs. the first-stage gear 
ratio for the two-stage gear arrangements with one and two transmission 
branches with the total gear ratio of u = 15:1. The volume utilization coeffi-
cients are assumed for the pinions (driving gears) Kv1 = 0.8 and for the driven 
mating gears Kv2 = 0.5.

A minimum of the volume function of the two-branch arrangement is 
 significantly lower than for the one-branch arrangement because of load 
sharing between branches. Results of the volume function minimization and 
the optimal stage gear ratios are presented in Table 6.1.

Figure 6.8 shows the volume function vs. first-stage gear ratio charts for 
the two-stage epicyclic gear arrangements (Figures 6.4 to 6.6) with the total 
gear ratio of u = 15:1. Both stages have three planet gears. The volume utiliza-
tion coefficients are assumed for the sun gears Kv1 = 0.8, for the planet gears 
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FIGURE 6.6
Two-stage epicyclic split power arrangement. (From Kapelevich, A.L., and V.M. Ananiev, Gear 
Technology, November/December 2011, 46–52. With permission.)
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Kv2 = 0.5, and for the ring gears Kv3 = 0.1. The effective gear face width ratio in 
the epicyclic gear stages is assumed Kb = 0.75.

A minimum of the volume function for the split power arrangement has 
advantages in comparison with the star and planetary arrangements, because 
part of the transmitted power goes from the first-stage carrier directly to the 
output shaft and the second stage is less loaded. Results of the volume func-
tion minimization and the optimal stage gear ratios for the two-stage epicy-
clic gear trains are presented in Table 6.2.

After definition of the minimal total volume function and the stage gear 
ratios, the individual gear volume functions can be defined using Equations 
(6.10), (6.11), (6.16), (6.17), and (6.18). Then the pitch cylinder volume of an 
 individual gear, considering (6.4), is

b
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Fv
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uI
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FIGURE 6.7
Two-stage external gear train volume function charts: (a) with one transmission branch 
(Figure 6.3b), (b) with two transmission branches (Figure 6.3c). (From Kapelevich, A.L., and 
V.M. Ananiev, Gear Technology, November/December 2011, 46–52. With permission.)

TABLE 6.1

Volume Function Minimization for Two-Stage External Gear Arrangements

Total gear ratio 15:1
Gear arrangement (Figure 6.7) a b
Number of branches 1 2
Minimum total volume function 50.469 33.697
First-stage volume function 12.476 8.303
Second-stage volume function 37.993 25.394
First-stage gear ratio 4.320:1 3.465:1
Second-stage gear ratio 3.472:1 4.329:1
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FIGURE 6.8
Two-stage epicyclic gear train volume function charts: (a) star arrangement (Figure  6.4), 
(b)  planetary arrangement (Figure 6.5), (c) split power arrangement (Figure 6.6). (From 
Kapelevich, A.L., and V.M. Ananiev, Gear Technology, November/December 2011, 46–52. 
With permission.)

TABLE 6.2

Volume Function Minimization for Two-Stage Epicyclic Gear Arrangements

Total gear ratio 15:1
Gear arrangement (Figure 6.8) a b c
Minimum total volume function 14.32 9.66 4.09
First-stage volume function 3.22 2.03 2.24
Second-stage volume function 11.09 7.63 1.85
First-stage planet/sun gear ratio 1.55:1 0.97:1 1.09:1
Second-stage planet/sun gear ratio 1.33:1 0.91:1 1.20:1
First-stage ring/sun gear ratio 4.11:1 2.93:1 3.19:1
Second-stage ring/sun gear ratio 3.65:1 2.82:1 3.40:1
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or
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, (6.29)

where Kv is the volume utilization coefficient, and ψ = bw/dw is the aspect ratio 
that varies in a range of 0.05–1.2 or higher [5]. This allows the pitch diameters 
and face widths of all gears to be defined.

However, the total volume and weight of a gear transmission are not in 
direct proportion to its volume function Fv. A share of gear volume is usually 
higher for simple arrangements like the external gear train. In more compli-
cated epicyclic gear arrangements this share could be much lower, because 
of a higher number and volume of other gearbox parts and components, such 
as carriers, bearings, shafts, lubrication system parts, etc. Statistical data of 
a gear volume share for a selected type of gear arrangement help to define 
the approximate size of a gearbox. In many cases, a gearbox is built in the 
overall mechanism assembly, and its size and weight minimization should 
be considered to achieve minimal size and weight of the whole mechanism.

The approach presented in this chapter utilizes volume functions, and 
allows estimation of volume and weight of a gearbox at the very early stages 
of product development.

6.2  High Gear Ratio Planetary Drives

Epicyclic gear stages provide high load capacity and compactness to gear 
drives. There is a huge variety of different combinations of planetary gear 
arrangements [64, 65]. Although some of them are quite complicated, they 
typically contain simple epicyclic stages (Figure 6.9a) or epicyclic stages with 
the compound planet gear (Figure  6.9b). These stages, however, have lim-
ited gear ratios. For simple epicyclic planetary stages when the ring gear 
is stationary, the practical gear ratio varies from 3:1 to 9:1 [66]. For epicyclic 
planetary stages with compound planet gears, the practical gear ratio varies 
from 8:1 to 30:1 [66].

6.2.1  One-Stage Arrangements

There are one-stage differential planetary arrangements that provide much 
higher gear ratios. In these arrangements the output shaft is connected to 
the second rotating ring gear instead of to the carrier, like in the epicyclic 
 planetary stages. A carrier in this case does not transmit torque, and it is 
called a cage because it is used just to support planet gears.
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Figure 6.10a and 6.10b presents differential planetary arrangements with 
compound planet gears. In the arrangement in Figure 6.10a the sun gear is 
engaged with a portion of the planet gear that is in mesh with the stationary 
ring gear. In this case the gear ratio is

 u

z
z

z z
z z

a

b a

a b

=
+

−

1

1

3

1

2 3

2 3

, (6.30)

where z1 is the sun gear number of teeth, z2a is the number of teeth the planet 
gear engaged with the sun gear and stationary ring gear, z2b is the number of 
teeth the planet gear engaged with the rotating ring gear, z3a is the stationary 
ring gear number of teeth, and z3b is the rotating ring gear number of teeth.

In the arrangement in Figure 6.10b the sun gear is engaged with a portion 
of the planet gear that is in mesh with the rotating ring gear. In this case the 
gear ratio is

 u

z z
z z
z z
z z

a b
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a b
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=
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−

1
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3 2

1 2

3 2

3 2

. (6.31)
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FIGURE 6.9
Epicyclic gear stages: (a) simple, (b) with compound planet gears. 1 - sun gear; 2 - planet gear; 
2a and 2b - two portions of compound planet gear; 3 - ring gear; 4 - planet carrier.
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If a gear ratio is negative, the input and output shaft rotation directions 
are opposite.

All gear meshes in differential planetary arrangements have the same cen-
ter distance. This condition from Equation (2.43) allows definition of relations 
between the operating modules mw (metric system) or diametral pitches DPw 
(English system). For the arrangement in Figure 6.10a they are

 m z z m z z m z zw a a w a a a a w b b b b12 1 2 2 3 3 2 2 3 3 2( ) ( ) ( )+ = − = −  (6.32)

and
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The relation between operating pressure angles in the gear meshes of sun 
gear z1 with planet gear z2a and planet gear z2a with ring gear z3a is defined by
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where αw1–2a is the operating pressure angle in a mesh of the sun gear and the 
planet gear engaged with the stationary ring gear, and αw2a–3a is the operating 
pressure angle in the planet/stationary ring gear mesh.
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FIGURE 6.10
Differential planetary arrangements: (a, b) with compound planet gears, (c) with singular 
planet gears. 1 - sun gear; 2 - planet gear; 2a and 2b - two portions of compound planet gear; 
3a - stationary ring gear; 3b - rotating ring gear; 4 - planet cage.
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Similar for the arrangement in Figure 6.10b,

 m z z m z z m z zw b b w b b b b w a a a a12 1 2 2 3 3 2 2 3 3 2( ) ( ) ( )+ = − = −  (6.35)

and
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The relation between operating pressure angles in the gear meshes of sun 
gear z1 with planet gear z2b and planet gear z2b with ring gear z3b is defined by
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where αw1–2b is the operating pressure angle in a mesh of the sun gear and the 
planet gear engaged with the rotating ring gear, and αw2b–3b is the operating 
pressure angle in the planet/rotating ring gear mesh.

In the differential planetary arrangements with compound planet gears, 
operating pressure angles in the planet/stationary ring gear mesh and in 
the planet the planet/rotating ring gear mesh can be selected independently. 
This allows specific sliding velocities in these meshes to be balanced to maxi-
mize gear efficiency. These differential planetary arrangements with com-
pound planet gears allow achievement of very high gear ratios up to 500:1 
and more with relatively high gear mesh efficiencies of 80–90% [66].

The assembly condition for these arrangements is

 
z z

n
a b

w

3 3− = integer , (6.38)

where nw is the number of planet gears.
Two parts of a compound planet gear should be angularly aligned. This is 

typically achieved by aligning the axes of one tooth of each part of the com-
pound planet gear, which makes its fabrication more complicated. Assembly 
of such gear drives requires certain angular positioning of planet gears. 
All this increases the cost of this type of gear drive.

Examples of the differential planetary gear actuators with compound 
planet gears are shown in Figure 6.11.

A simplified version of the one-stage differential planetary arrangement is 
shown in Figure 6.10c. This arrangement does not use the compound planet 
gear. All three gear meshes should have the same center distance. The plain 
planet gear is engaged with the sun gear, and both stationary and rotating 
ring gears. This does not allow specific sliding velocities in each mesh to 
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FIGURE 6.11
Differential planetary gear actuators: (a, b) cross sections, (c) photo. (Courtesy of Leigh 
Aerosystems Corp., Carlsbad, California.)
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be equalized, resulting in some gear efficiency reduction. Relations between 
operating pressure angles in the gear meshes are defined by
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and
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where αw1–2 is the operating pressure angle in sun/planet gear mesh, αw2–3a is 
the operating pressure angle in planet/stationary ring gear mesh, and αw2–3b 
is the operating pressure angle in planet/rotating ring gear mesh.

A gear ratio is

 u

z
z
z
z
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a

b

=
+

−

1

1

3

1

3

3

. (6.42)

This gear arrangement with three planet gears allows achievement of a 
gear ratio over 200:1 in one stage. Gear mesh efficiency of this type of gear 
drives is typically lower in comparison with differential planetary gear 
drives with compound gears (Figure 6.10a and b) with the same gear ratio 

(c)

FIGURE 6.11 (continued)
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due to unequalized specific sliding velocities. Depending on the gear ratio, it 
is 70–84% [66]. However, such an arrangement provides a compact package. 
It also simplifies planet gear fabrication and does not require angular posi-
tioning of planet gears in assembly, reducing gear drive cost. An example of 
the differential planetary gearbox with four simple planet gears is shown 
in Figure 6.12.

In differential planetary arrangements (Figure 6.10) tangent forces applied 
to the planet gear teeth from the stationary and rotating ring gears are 
unbalanced, because they lie on different parallel planes and have opposite 

A

A

A–A

Z3b

Z3a

Z2

Cage

Z1

(a)

(b) (c)

FIGURE 6.12
Differential planetary gear actuator: (a) sketch with cross section, (b, c) gearbox component 
photos. (Courtesy of Thermotech Co., Hopkins, Minnesota.)
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directions. The sturdy planet cage is required to avoid severe planet gear 
mesh misalignment. There are gear drives that use the differential planetary 
arrangements with the balanced planet gear tangent forces (Figure  6.13). 
In  this case, the triple-compound planet gears (Figure  6.13a and 6.13b) 
are used. They have identical gear profiles on their ends that are engaged 
with two identical stationary ring gears. The middle portion of such planet 
gears has a different profile than those on the ends and is engaged with the 
rotating ring gear. The arrangement in Figure 6.13c has plain planet gears 
engaged with the sun gear, two stationary ring gears, and one rotating ring 
gear. These types of differential planetary drives typically do not have the 
cage and bearings, because the planet gear forces are balanced and planet 
gears themselves work like the roll bearings for radial support of the rotat-
ing ring gear.

6.2.2  Two-Stage Arrangements

In most conventional two-stage planetary arrangements the gear ratio usu-
ally does not exceed 100:1, although there are possible arrangements that 
allow a significant increase in the gear ratio. Two examples of such two-stage 
planetary gear trains are described in [67]. Figure  6.14 shows the gear 
arrangement A with the sun gears of the first and second stages connected 
together and the compound cage supporting the planet gears of both first 
and second stages. A sketch of the gearbox with arrangement A is presented 
in Figure 6.15.

Both sun gears are connected to the input shaft and engaged with the planet 
gears of the first and second stages accordingly. The first-stage ring gear is 
stationary and connected with the gearbox housing. It is engaged with the 
first-stage planet gears. The compound cage practically contains the first- and 
second-stage cages connected together. The ring gear of the second stage is 
engaged with the second-stage planet gears and connected to the output shaft.

The gear ratio of arrangement A is

 u
z z z

z z z z

II I I

I II II I= × +
× − ×
3 1 3

1 3 1 3

( )
, (6.43)

where z1
I and z1

II are numbers of teeth of the sun gears of the first and second 
stages, z2

I and z2
II are numbers of teeth of the planet gears of the first and 

second stages, and z3
I and z3

II are numbers of teeth of the ring gears of the 
first and second stages.

Figure 6.16 shows the alternative gear arrangement B with the sun gears 
of both stages connected together and the ring gears of both stages also con-
nected together. A sketch of the gearbox with the alternative arrangement B 
is  presented in Figure 6.17.
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FIGURE 6.13
Differential planetary arrangements without planet gear cage: (a, b) with triple-compound 
planet gears, (c) with simple planet gears. 1 - sun gear; 2 - planet gear; 2a and 2b - two portions 
of triple-compound planet gear; 3a - stationary ring gear; 3b - rotating ring gear.
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Both sun gears are connected to the input shaft and engaged with the 
planet gears of the first and second stages accordingly. The shafts support-
ing the first-stage planet gears are connected (pressed in, for example) to the 
gearbox housing. Both ring gears are connected together and engaged with 
the planet gears of the first and second stages accordingly. The second-stage 
carrier is connected to the output shaft.

The gear ratio of arrangement B is

 u
z z z

z z z z

I II II

II I I II= × +
× − ×

3 1 3

1 3 1 3

( )
. (6.44)

The maximum gear ratios of these two-stage planetary arrangements 
A and B are achieved when the denominator of Equations (6.43) and (6.44) is 
equal to 1 or –1. This condition can be presented as

 | |z z z zI II II I
1 3 1 3 1× − × = . (6.45)

When this denominator is 1, the input and output shafts are rotating in 
the same direction. When it is –1, the input and output shafts are rotating in 

1I

3II

2II

4 

1II

2I

3I

FIGURE 6.14
Two-stage planetary arrangement A with connected sun gears of first and second stages and 
compound cage. 1I and 1II - sun gears; 2I and 2II - planet gears; 3I - stationary ring gear of first 
stage; 3II - rotating ring gear of second stage; 4 - compound cage. Indexes I and II are for first 
and second stages accordingly.
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FIGURE 6.15
Two-stage planetary gearbox (arrangement A) with connected sun gears of first and second 
stages and compound cage: (a) axial cross section, (b) section I-I, (c) section II-II. γi - central 
 location angles between planet gears. Indexes I and II are for first and second stages.
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opposite directions. If a number of planet gears are more than one (nwI > 1 
and nwII > 1), the condition (6.45) requires irregular angular positioning of 
the planet gears in one or both planetary stages. This means that the central 
location angles γi between planet gears in one or both stages are not identical 
(see Figures 6.15b and c and 6.17b and c).

The following method is used to define the central location angles γi 
between planet gears for irregular angular positioning of the planet gears in 
one or both planetary stages. The planet gear location factor is

 F
z z

nw
nw = +1 3 . (6.46)

If the factor Fnw is a whole number, the planet gears have identical central 
location angles between the planet gears equal to 360°/nw. Otherwise, if the 
factor Fnw is not a whole number, the initial central angles in radians are

 φ π
i

i
nw

= −2 1( )
, (6.47)

where i is a planet gear number from 1 to nw.

4 

3I

2I

2II

1II

3II

1I

FIGURE 6.16
Two-stage planetary arrangement B with sun gears and ring gears of first and second stages 
connected together. 1I and 1II - sun gears; 2I and 2II - planet gears; 3I and 3II - ring gears; 4 - second-
stage carrier. Indexes I and II are for first and second stages.
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FIGURE 6.17
Two-stage planetary gearbox (arrangement B) with sun gears and ring gears of first and sec-
ond stages connected together: (a) axial cross section, (b) section I-I, (c) section II-II. γi - central 
location angles between planet gears; nw - number of planet gears. Indexes I and II are for first 
and second stages.
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The ring gear position angles in radians are

 ϕ φi i
z
z

= +( )1 1

3
. (6.48)

The numbers of the ring gear teeth per each position angle are

 z
z

ai i3
3

2
= ϕ

π
. (6.49)

Rounded numbers of the ring gear teeth per each position angle are

 z round zri ai3 3= ( ) . (6.50)

The adjusted central angles in radians are

 φ π
a

z
z z

i
ri=

+
2 3

1 3
. (6.51)

The central angles between planet in radians gears are

 γ φ φj j ja a= −+1 , (6.52)

where φanw+1 = 2π.
For example, if a number of the sun gear teeth is z1 = 21; planet gear, z2 = 20; 

ring gear, z3 = 61; and a number of planet gears is 5, the central angles between 
planet gears are γ1 = 70.244°, γ2 = 74.634°, γ3 = 70.244°, γ4 = 74.634°, and γ5 = 70.244°.

The neighboring planet gears located at the minimum central angles must 
be checked for the possibility of tip/tip interference. Irregular angular posi-
tioning of the planet gears may result in a imbalance in the planetary stage. 
This must be avoided by the carrier assembly balancing.

Application of the two-stage planetary arrangements A and B with the 
number of gear teeth satisfying a condition (6.45) allows very high gear ratio 
values to be achieved. Practically these values are limited only by numbers 
of teeth of the ring gears z3

I and z3
II. Table 6.3 presents maximum achievable 

gear ratios depending on numbers of teeth of the ring gears z3
I and z3

II.
Unlike in conventional two-stage planetary arrangements (Figures  6.4 

to 6.6), in the planetary arrangements A and B a total gear ratio does not 
depend on internal gear ratios in each stage. This allows increase of a num-
ber of planet gears. An example of the gear ratio calculation for the planetary 
arrangements A and B is shown in Table 6.4.

Efficiency of these two-stage planetary gear arrangements is in opposite 
proportion to gear ratio and noticeably lower than for conventional two-stage 
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planetary gear arrangements. One of the potential areas of application is in 
different positioning systems that need very low-output RPM and  typically 
do not require high-output torque.

6.3  Self-Locking Gears

In most gear drives, when driving torque is suddenly reduced as a result 
of power outage or any mechanical failure at the transmission input, gears 
are rotating either in the same direction driven by inertia or in the oppo-
site direction driven by the resistant load, applied to the output shaft. The 
latter condition is known as backdriving. During inertial motion or back-
driving, a driven output shaft becomes a driving one and a driving input 
shaft becomes a driven one. There are many gear drive applications where 
such operating mode is not acceptable. In order to prevent it, different types 
of brake or clutch devices are used. However, there are solutions that pre-
vent inertial motion or backdriving using self-locking gears without any 

TABLE 6.3

Maximum Achievable Gear Ratios in Two-Stage Planetary 
Gear Arrangements A and B

Ring Gear Number of Teeth, z3
I and z3

II Maximum Gear Ratio*

100 ±14,000:1
200 ±66,000:1
300 ±160,000:1
400 ±280,000:1

* +, if rotation directions of the input and output shafts are the same; 
–, if rotation directions of the input and output shafts are opposite.

TABLE 6.4

Gear Ratio Calculation Examples

Arrangement A (Figure 6.15) B (Figure 6.17)

First stage Sun gear number of teeth 21 21
Planet gear number of teeth 21 21
Ring gear number of teeth 62 62
Number of planet gears 5 5

Second stage Sun gear number of teeth 22 22
Planet gear number of teeth 22 22
Ring gear number of teeth 65 65
Number of planet gears 5 5

Gear ratio 5395:1 –5394:1
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additional devices. The most common one is a worm gear drive with a low 
lead angle. In a self-locking worm gear drive, the torque applied to the worm 
gear is blocked by friction force preventing its rotation. However, worm gear 
drives have some constraints. They require a crossed axis shaft arrangement 
and relatively high gear ratio. They also have low gear mesh efficiency.

There are parallel axis self-locking gears [68, 69]. These gears, unlike worm 
gears, can utilize practically any gear ratio. They have a driving mode and a 
self-locking mode when inertial or backdriving torque is applied to the out-
put gear. Earlier these gears had a low (<50%) driving efficiency that limited 
their application. Then it was proved [70] that a higher driving efficiency in 
such gear drives is possible. The self-locking conditions were analyzed [71].

6.3.1  Self-Locking Conditions

Figure 6.18 presents conventional gears (a) and self-locking gears (b) in driv-
ing and backdriving modes. Figure 6.19 presents conventional gears (a) and 
self-locking gears (b) in driving and inertial driving modes. Conventional 
gear drives usually have the pitch point P located on an active portion of the 
contact line B1-B2 (Figures 6.18a and 6.19a). This pitch point location provides 
low specific sliding velocities and as a result, high driving efficiency. In the 
case where such gears are driven by a resistant load or inertia applied to 
output shaft, they are rotating freely.

In Figures 6.18 and 6.19:

T1 = driving pinion torque
T2 = driven gear torque
T’2 = driving torque, applied to the gear
T’1 = driven torque, applied to the pinion
F = driving force
F’ = driving force, when the backdriving or inertial torque is applied 

to the gear
αw = operating transverse pressure angle
γ = arctan( f), friction angle
f = average friction coefficient

In order to achieve self-locking, pitch point P should be located off the active 
portion of the contact line B1-B2. There are two options. Option 1 is when point P 
is placed between a center of the pinion O1 and point B2, where the outer diam-
eter of the gear intersects the line contact. This makes the self-locking possible, 
but the driving efficiency will be low under 50% [70]. Option 2 (Figures 6.18b 
and 6.19b) is when point P is placed between point B1, where the outer diam-
eter of the pinion intersects the line contact, and a center of the gear O2. This 
type of self-locking gear has a relatively high driving efficiency of >50%.
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FIGURE 6.18
Conventional (a) and self-locking (b) gears. 1 - driving pinion; 2 - driven gear. Solid lines show 
normal driving operation, dashed lines show the case when driven gear 2 becomes driven 
by resistant load. (From Kapelevich, A.L., and E. Taye, Gear Solutions, May 2012, 53–58. With 
permission.)
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FIGURE 6.19
Conventional (a) and self-locking (b) gears. 1 - driving pinion; 2 - driven gear. Solid lines show 
normal driving operation, dashed lines show the case when driven gear 2 becomes driven by 
inertia. (From Kapelevich, A.L., and E. Taye, Gear Solutions, May 2012, 53–58. With permission.)
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An additional necessary condition of self-locking is to have a sufficient 
friction angle γ to deflect the force F’ beyond the center of the pinion O1. 
It creates the resisting self-locking moment (torque) T’1 = F’ × L’1; L’1 is a lever 
of the force F’1. This condition can be presented as L’1min > 0 or

 γ
α α

>
+ × − ×

arctan[
( ) tan tan

]
1

1 2u uw a
 (6.53)

or

 f
u uw a

>
+ × − ×

1
1 2( ) tan tanα α

, (6.54)

where u = z2/z1 is the gear ratio, z1 and z2 are the pinion and gear number of teeth, 

and αa
b

a

d
d

2
2

2
= arccos  is the involute profile angle at the tip of the gear tooth.

6.3.2  Self-Locking Gear Design

Self-locking gears are custom and suitable for Direct Gear Design® applica-
tion to define the gear tooth geometry (Figure 6.20) [72]. Self-locking condi-
tions (6.53) and (6.54) require high pressure angle and high sliding friction 
in the tooth  contact. If the sliding friction coefficient is f = 0.1 – 0.3, it requires 
the transverse operating pressure angle to be αw = 75 – 85°. As a result, 

2π/z
ν da

db

(a)

νν

2π/z
da

dbddbc

(b)

FIGURE 6.20
Self-locking gear tooth geometry: (a) symmetric tooth profile, (b) asymmetric tooth profile. 
da  -  tooth tip circle diameter; db - base circle diameter; ν - involute intersection profile angle; 
z - number of teeth. Subscripts d and c are for the drive and coast flanks of the asymmetric tooth. 
(From Kapelevich, A.L., and E. Taye, Gear Solutions, May 2012, 53–58. With permission.)



185Gear Design Details

© 2008 Taylor & Francis Group, LLC

a transverse contact ratio εα < 1.0 (typically 0.4–0.6). Lack of a transverse con-
tact ratio should be compensated by the axial contact ratio εβ to guarantee the 
total contact ratio εγ = εα + εβ ≥ 1.0. This can be achieved by using helical gears 
(Figure 6.21a). However, helical gears generate high axial force that is applied 
to  bearings. Double-helical (or herringbone) gears (Figure 6.21b) allow this 
force to be neutralized.

Another axial force free self-locking gear design option is application of 
laminated gears (Figure 6.22). They have several layers assembled with an 
angular shift. These  layers are engaged in gear mesh with the mating gear 
layers consecutively. The rational  number of layers is three or more. They 
provide necessary axial contact ratio, like in helical gears, but without axial 
force. Since these gears are engaged in mesh one layer at a time, every layer 
face width must provide sufficient tooth surface endurance in both driving 
and self-locking modes. This is especially important considering very high 
transverse pressure angles resulting in increased bearing loads that could 
be up to four to five times higher than for conventional 20° pressure angle 
gears with the same driving torque. Bearing selection, and shafts and gear-
box housing design should be done accordingly to hold this increased load.

Application of asymmetric teeth for conventional unidirectional drives 
allows improvement of their performance. In self-locking gears that should 

(a)

(b)

FIGURE 6.21
Helical (a) and double-helical (b) self-locking gears. (From Kapelevich, A.L., and E. Taye, 
Gear Solutions, May 2012, 53–58. With permission.)
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prevent backdriving, the same tooth flank is loaded in both driving and lock-
ing modes (Figure 6.18b). In this case, the asymmetric tooth profile allows 
increase of the drive transverse contact ratio in comparison with the sym-
metric tooth profile. It makes it possible to reduce the helix angle and axial 
load. The article [73] describes the self-locking gear arrangement to prevent 
backdriving, which allows the use of different tooth flanks to increase the 
driving mode efficiency, although such an arrangement requires a special 
gear mechanism that changes rotation direction for the self-locking mode.

In self-locking gears that should prevent inertial driving, different tooth 
flanks are used for driving and locking modes (Figure 6.19b). In this case, 
an asymmetric tooth profile with a low-pressure angle provides higher effi-
ciency for the driving mode and the opposite high-pressure angle tooth pro-
file is used for reliable self-locking.

An example of the self-locking gear is shown in Figure 6.23. These gears 
were designed, made, and tested to explore their driving and locking perfor-
mance [72]. The gear data are presented in Table 6.5.

Average driving efficiency of the self-locking gear obtained during testing 
was above 85%. This gear set testing has confirmed the self-locking condi-
tion in the backdriving mode.

Initially self-locking gears were used in the textile industry [69]. However, 
this type of gear has many potential applications, like in lifting mechanisms, 
assembly tooling, and other gear drives where the backdriving or inertial 
driving is not permissible. One such potential application of the self-locking 
gears is for an automotive engine continuously variable valve lift system [74].
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FIGURE 6.22
Laminated self-locking gears.
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6.4  Plastic Gear Design Specifics

Just a few decades ago plastic gears were considered for use mainly for 
low-demand applications: toys, some consumer product transmissions, 
etc. Nowadays progress in polymer materials and injection molding pro-
cessing has allowed drastic expansion of plastic gear application areas. 
They are used not only for motion transmissions, but also in moderate 
load power drives in automotive, medical, defense, agriculture, and many 
other industries.

Comprehensive books about plastic gears are written by C. Adams [75] 
and V.E. Starzhinsky with coauthors [76]. The AGMA standards [77, 78] pres-
ent tooth proportions for plastic gears and the AGMA standard [79] gives 
a polymer material selection guideline. The paper [80] describes polymer 
gear wear behavior and its performance prediction based on the extensive 
investigations on the gear thermal mechanical contact both numerically and 
experimentally. The papers [81, 82] study asymmetric plastic spur gears.

FIGURE 6.23
Helical self-locking gears. (From Kapelevich, A.L., and E. Taye, Gear Solutions, May 2012, 53–58. 
With permission.)

TABLE 6.5

Self-Locking Gear Data

Gear Input Output

Number of teeth 6 11
Normal module, mm 1.500
Normal pressure angle 63°
Helix angle on the pitch diameter 75°
Transverse pressure angle 82.5°
Transverse contact ratio 0.50
Axial contact ratio 2.00
Driving torque, Nm 0.5



188 Direct Gear Design

© 2008 Taylor & Francis Group, LLC

6.4.1  Polymer Benefits and Limitations

Benefits of polymer gears in comparison to metal ones include:

•	 Low cost of injection molding process for high-volume production 
gear drive components

•	 Low vibration and noise
•	 Low weight and inertia
•	 No corrosion
•	 No electric current conductivity
•	 In some cases they can work without external (oil or grease) lubrication

These advantages made possible usage of polymers for a wide variety of 
gear drives. However, there are limitations that must be taken into account 
considering plastic gears instead of metal ones:

•	 Low strength and wear resistance
•	 Low thermal conductivity and maximum operating temperature
•	 Wide deviation of material property parameters
•	 Sensitivity to operating conditions (temperature and humidity)
•	 Low modulus of elasticity and increased tooth deflection
•	 Limited injection molding process accuracy
•	 Creep

Main polymer gear materials are acetals (POM) and nylons (6, 66, 610), poly-
esters, and polycarbonates. They can be used with operating temperatures 
up to 150°C. For elevated temperature (<170°C) suitable gear polymers are 
polyphthalamide (PPA), nylon 46, and similar. High-temperature (<200°C) 
plastic materials include polyetherimide (PEI), polyetheretherketone (PEEK), 
and liquid crystal polymers (LCPs).

Some drawbacks of gear plastics properties can be improved by differ-
ent additives to polymer composition. Additives for higher flexural strength 
include glass, carbon, and aramid (Kevlar) fibers. Tooth flank wear resistance 
of nonlubricated plastic gears can be increased by antiwear and antifriction 
additives: silicone, polytetrafluoroethylene (PTFE), graphite powders, molyb-
denum disulfide (MoS2), etc.

6.4.2  Direct Gear Design of Polymer Gears

Although there are machined plastic gears, the most common and cost-effective 
plastic gear fabrication technology is injection molding. This process does 
not use the generating rack type tooling to form gear teeth. Besides, molding 
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tool cavity shape is unique for every gear profile. This makes plastic molded 
gears more acceptable for Direct Gear Design that maximizes performance 
of plastic gearing [83] by compensating some polymer property limitations. 
Its guidelines for polymer gears include:

•	 Increased safety factors to guarantee sufficient tooth strength con-
sidering a wide range of material properties deviation, depending on 
molding process parameters, operating temperature, humidity, etc.

•	 Increased tooth size (larger module or coarser diametral pitch) to 
reduce bending stress

•	 Lower number of teeth to fit the increased tooth size into required 
center distance with given gear ratio

•	 Higher operating pressure angle and contact ratio to reduce bending 
and contact stress, and increase tooth flank wear resistance

•	 Bending stress balance that equalizes safety factors of mating gears
•	 Specific sliding balance for higher efficiency and tooth flank wear 

resistance
•	 Root fillet profile optimization for bending stress reduction
•	 Asymmetric tooth profile for unidirectional gear drives

6.4.3  Metal-to-Plastic Conversion

Besides original plastic gear designs, applications of plastic gears are often 
considered to replace relatively lightly loaded metal gears usually for cost 
and noise reduction. In this case exact replication of metal gear design typi-
cally does not work, because of material property difference, especially the 
low strength of polymers in comparison with metals. Design of plastic gears 
should compensate for the lack of polymer strength following guidelines 
described in the previous section. Table 6.6 presents an example of metal-to-
plastic gear conversion. It shows how Direct Gear Design makes it possible 
to replace metal machined gears with plastic ones providing required per-
formance and sufficient safety factors.

6.5  Gear Tooth Profile Modeling

A gear tooth profile includes involute flanks, root fillets, tooth tip lands, and 
tooth tip radii or chamfers. As a result of the Direct Gear Design geometry 
calculation procedure, a tooth profile is defined by X,Y-coordinate points 
(Figure 6.24). Usually a number of these points vary from several hundred to 
several thousand.
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For computer-aided design (CAD) gear modeling, and computer numerical 
control (CNC) machining, the coordinate point presentation of the tooth pro-
file coordinate points should be replaced by some mathematical curves, for 
example, using the B-spline interpolation [84]. N.J. Kleiss [85] has applied the 
tangent circular arc approximation for gear tooth modeling. Y.V. Shekhtman 
used this approximation approach and developed an algorithm of fitting 
the tangent circular arc with given accuracy, a maximum deviation from 
initial X,Y-coordinate points. Circular arcs describing the tooth profile are 
consequently connected and have equal first derivatives at the connection 
point for smooth transition from one arc to another. A number of these arcs 
depend on the tooth size (module or diametral pitch), its profile, number of 
initial points, and required approximation accuracy. This accuracy is devia-
tion Δ from the coordinate point to the closest point of the arc (Figure 6.25a). 

TABLE 6.6

Example of Metal-to-Plastic Gear Conversion

Design Method

Metal Gear Pair Plastic Gear Pair

Traditional (Standard 20° 
Pressure Angle Tool) Direct

Gear Driving Driven Driving Driven

Number of teeth 34 54 17 27
Module, mm 0.5 1.0
Pitch diameter, mm 17.0 27.0 17.0 27.0
Center distance, mm 22.0 22.0
Face width, mm 6.0 6.0 6.0 6.0
Operating pressure angle, ° 20.0 27.0
Operating contact ratio 1.56 1.27
Root fillet Trochoidal Trochoidal Optimized Optimized
Mesh efficiency, % 98.8 98.2
Maximum temperature, °C 110 110
Maximum driving torque, Nm 1.0 1.0
Maximum bending stress, MPa 128 130 45 45
Gear material Steel 4140 normalized Amodel AS-1133 HS
Yield tensing strength, MPa 635 193
Minimum bending safety factor 5.0 4.9 4.3 4.3
Image of driving gear
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Deviation Δ must be much less than the tooth profile tolerance. Typically Δ is 
about 0.0005 mm (or 0.00002 in.), which makes it virtually undetectable by 
the tooth profile inspection. Then this approximation does not affect tooth 
flank accuracy. The number of arcs per one gear tooth usually varies from 
10 to 30 or more. Application of the tangent circular arc approximation in 
comparison with the B-spline  interpolation for gear tooth modeling allows 
creation of more compact CAD files.

The tooth tip and root areas of the tooth profile usually require correction, 
because the tangent arcs lie in proximity of the X,Y-coordinate points. The 
tooth tip land arcs may have its centers not coinciding with the center of the 
gear. In order to fix it, the top land is replaced with the tooth tip diameter arc 
and tooth tip radii or chamfers (Figure 6.26).

Polar duplication of the tooth profile is used to create a whole gear pro-
file. The ends of the connected tooth profiles may not coincide exactly. 
Then the tangent arc should be fit to connect the neighboring tooth profiles 
(Figure 6.27).

If the tangent arc approximation technique is applied to the whole sym-
metric tooth, the left and right tooth flank arcs are not exactly symmetric. 
It makes sense to fit tangent arcs to only one-half of the tooth profile and then 
mirror it also fixing the tooth tip and root areas (Figure 6.28).

Y

X

FIGURE 6.24
Tooth profile coordinate points.
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–∆

+∆

(a)

(b)

FIGURE 6.25
Tangent circular arc approximation: (a) deviation Δ from coordinate points, (b) resulting tooth 
profile.
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da
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FIGURE 6.26
Tooth tip correction.

FIGURE 6.27
Tooth root correction.

FIGURE 6.28
Symmetric tooth root construction.





195© 2008 Taylor & Francis Group, LLC

7
Tolerancing and Tolerance Analysis

Every engineer should be aware that “the devil is in the details.” Assigned 
manufacturing tolerances are some of those details of gear drive design. 
Tolerances that are seemingly negligibly small in comparison to nominal gear 
dimensions greatly affect gear drive performance and product cost. Incorrect 
tolerancing can turn a potentially successful project into a total failure.

This chapter considers tolerance selection approach and shows how toler-
ancing influences some gear pair performance parameters.

7.1  Gear Specification

Comprehensive gear drawing specification is critically important. With a 
noncompletely specified drawing a designer practically delegates his respon-
sibilities to a gear supplier, letting him guess about the designer’s actual 
intentions. A main problem here is that a supplier is not in a position to do 
this, even if he has gear design experience, because he usually does not know 
enough about gear drive application specifics, loads, RPMs, operating cycle 
and conditions, etc. As a result of such guessing, gears are typically made the 
most cost-efficient for a supplier in a way that may compromise gear drive 
performance. The 3D CAD gear model also cannot replace a properly speci-
fied gear drawing.

A gear drawing specification must completely define gear geometry, 
accuracy level (standard accuracy grade or accuracy parameters), reference 
dimensions, all critical dimensions with tolerances, gear inspection dimen-
sions (for example, measurement over/between pins or balls, span measure-
ment, etc.), surface finish, material data including its grade, heat treatment 
(surface and core hardness, harden case depth), and post-machining sur-
face treatment (for example, shot peening, super finishing, coating, etc.). 
It may also describe gear tooth flank microgeometry (tip and root relief, lead 
 crowing) and contain information about tooling, processing, material speci-
men condition, and some additional information. Most gear geometry and 
inspection dimensions are included in the gear specification tables. Examples 
of proper gear drawing specification tables for most types of involute gears 
are described in [86, 87].
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The Direct Gear Design® method provides a sufficient gear drawing speci-
fication that is very similar to a proper drawing specification for traditionally 
designed gears to make it understandable to a gear supplier and exclude 
any guesswork or confusion, although this specification typically has some 
additional data. For example, it should have a description of the optimized 
root fillet profile (as a coordinate point table or as part of the CAD tooth 
profile that accompanies a gear drawing) and its tolerance. Tooth flanks of 
an asymmetric gear should clearly be identified in the gear drawing to avoid 
potential assembly problems (Figure 7.1). A gear specification table for gears 
with asymmetric teeth contains geometry parameters of both drive and 
coast tooth flanks (see for example Table 7.1).

7.2  Accuracy Selection

Gear accuracy selection, defined by gear tolerances, depends on gear drive 
application, operating conditions, and technical and market performance 
requirements. This selection is also affected by chosen gear fabrication tech-
nology, materials, heat treatment, etc. Gear accuracy is defined by a set of 
tolerances. Types of gear tolerances and their effects on fabrication, cost, 
and function of a gear drive are described in [38]. For high-performance 
gear drives, such as, for example, aerospace and racing transmissions, the 
functional requirements are primary factors for tolerance selection. For less 
demanding gear drive applications, other factors, such as cost, manufactur-
ability, availability of fabrication equipment, and tooling, prevail. In many 
cases gear accuracy standards, like, for example, [88–91], are used for toler-
ance selection. There are also gear dimensions, for which tolerances are not 
defined by accuracy standards. Such dimensions are the tooth tip diameter, 

Drive Flank Coast Flank

FIGURE 7.1
Asymmetric tooth flank identification in the gear drawing.
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root diameter, form diameter, gear face width, tooth tip radius or chamfer, etc. 
The standards also do not cover the tooth microgeometry tolerances defin-
ing acceptable limits of the tooth tip and root relief, and lead  crowning. This 
tolerance selection is based on gear drive application, operating  conditions, 
experience with the previously designed similar drives, and the prototype 
performance testing results.

Direct Gear Design utilizes the same tolerance selection criteria and the 
same standards as traditional gear design. At the same time, it may add its 

TABLE 7.1

Gear Specification Table Example

Number of teeth a

Module b

Reference diameter b

Pressure angle at reference pitch diameter Drive flank b

Coast flank b

Base diameter Drive flank b

Coast flank b

Form diameter Drive flank Min/maxa

Coast flank Min/maxa

Tooth tip diameter Min/maxa

Root diameter Min/maxa

Tooth thickness at reference pitch diameter Min/maxa

Tooth tip radius Min/maxa

Face width Min/maxa

Pin diameter b

Measurement over two pins Min/maxa

Accuracy grade per AGMA 2015-A01 b

Run-out tolerance, Fr
a

Total cumulative pitch tolerance, Fp
a

Single pitch tolerance, fpt
a

Profile tolerance Total, Fα
a

Form, ffα
a

Slope, fHα
a

Helix tolerance Total, Fβ
a

Form, ffβ
a

Slope, fHβ
a

Root fillet profile tolerance a, c

Mating gear part number b

Mating gear number of teeth b

Center distance Min/maxb

a Critical parameter or dimension.
b Reference parameter or dimension.
c Root fillet profile tolerance is not defined by gear accuracy standards 

and should be assigned by designer.
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own specific tolerance requirements. One such requirement is the root fillet 
profile tolerancing. Although the gear tooth root fillet is an area of maximum 
bending stress concentration, existing gear accuracy standards do not define 
the fillet profile tolerances, and in traditional gear design its profile and accu-
racy are marginally defined on the gear drawing by typically very generous 
root diameter tolerance and, in some cases, by the minimum fillet radius.

Direct Gear Design optimizes the gear tooth root fillet profile for mini-
mum bending stress concentration. This requires that the root fillet profile 
must be comprehensibly specified, toleranced, and then inspected. If the 
whole gear profile, including the root fillet, is shaped by the same fabrica-
tion process and tooling, the fillet profile tolerance can be the same as the 
involute flank tolerance that is specified by the standards. However, some 
gear fabrication methods apply separate machining processes and tooling 
for final machining of the tooth involute flank and the root fillet. One such 
method uses the gear cutters (hobs or shaper cutters) with protuberances 
for final machining of the tooth root fillet profile and preliminary machin-
ing of the tooth flanks, leaving a stock for grinding or shaving after heat 
treatment. As a result, the involute tooth flank and root fillet accuracy are 
very different. In this case, the fillet profile tolerance is selected according to 
accuracy grade achievable by the fillet profile machining. The root diameter 
tolerance of directly designed gears is defined considering the root fillet 
 profile tolerance.

7.3  Tolerance Analysis

A goal of a tolerance analysis is to verify the mating gear pair design data in 
order to guarantee the adequate normal backlash, sufficient root clearance, 
and minimal acceptable contact ratio at any possible tolerance combinations 
and operating conditions.

Operating conditions include operating temperature and humidity ranges. 
A wide operating temperature range noticeably changes gear drive dimen-
sions (particularly for large gear transmissions) and may greatly affect toler-
ance analysis results in case of dissimilar material applications for gears, gear 
housing, shafts, etc. This is especially critical for gear drives made with poly-
mer components. Besides, some gear polymers like nylons absorb moisture, 
resulting in increased gear dimensions. Typical input data for a tolerance 
analysis are presented in Table 7.2. Tolerance analysis defines the mating gear 
normal backlash, contact ratio, and root clearances at two extreme (minimum 
and maximum) value combinations of tolerances and parameters presented 
in Table 7.2.
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TABLE 7.2

Tolerance Analysis Input Data

Dimensions and Tolerances Symbol Units

Number of teeth of mating gears z1, z2 —
Normal module or diametral pitch at reference pitch diameter mn or DPn mm or 1/in.
Normal pressure angle at reference pitch diameter 
(for asymmetric gears: drive and coast pressure angles)

α
αd and αc

°
°

Helix angle at reference pitch diameter β °
Tooth tip diameters (minimum/maximum values) damin1, damax1, 

damin2, damax2

mm or in.
mm or in.

Root diameters (minimum/maximum values) drmin1, drmax1, 

drmin2, drmax2

mm or in.
mm or in.

Normal tooth thickness at reference pitch diameter 
(minimum/maximum values)

Snmin1, Snmax1, 

Snmin2, Snmax2

mm or in.
mm or in.

Tooth tip radius (minimum/maximum values) Ramin1, Ramax1, 
Ramin2, Ramax2

mm or in.
mm or in.

Gear face width (minimum/maximum values) bmin1, bmax1, 
bmin2, bmax2

mm or in.
mm or in.

Run-out tolerancea Fr1, Fr2 mm or in.
Single pitch tolerance fpt1, fpt2 mm or in.
Total profile tolerance Fα1, Fα2 mm or in.
Total helix tolerance Fβ1, Fβ2 mm or in.
Housing center distance amin, amax mm or in.
Bearing radial gap δmin1, δmax1, 

δmin2, δmax2

mm or in.
mm or in.

Operating Conditions

Temperature (minimum/ambientb/maximum values) Tmin, Tamb, Tmax °C or °F

Humidity (minimum/ambientb/maximum values) RHmin, 
RHamb, 
RHmax

%
%
%

Material Properties
Linear coefficient of thermal expansion (CTE) δt mm/mm/°C 

or in./in./°F

Moisture expansion coefficient (CME)c δm mm/mm/% 
or in./in./%

a In some cases the total radial composite deviation (Fi’’), which is also known as the total 
 composite error (TCE), is used instead of the run-out tolerance.

b Ambient temperature or humidity in this content is inspection lab temperature or humidity. 
Typical ambient temperature is 20°C or 68°F and ambient humidity is about 50% RH.

c For moisture absorbing materials.
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Tolerance analysis for an external gear pair considers two cases:

Case 1 (Figure 7.2a): Resulting in minimum normal backlash and radial 
clearances, and maximum contact ratio. This gear tolerance buildup 
includes the minimum housing center distance, bearing radial plays, 
and tooth tip radii, and the maximum tooth tip diameters, root diam-
eters, and normal tooth thicknesses of mating gears. In this case, 
run-outs of both mating gears should reduce the effective center 
distance, and the tooth profile, pitch, and helix maximum tolerance 
combination increases the effective tooth thickness. Minimum or 
maximum operating temperature value is selected depending on 
gear and housing material combination to reduce the effective center 
distance. If, for example, the material combination is the steel gears 
and aluminum housing, the minimum effective center distance is 

εαdmax

jbnmin

αwcmin αwdmin

cmin2

dbc2

dbd2

awmin

cmin1

dbd1

dbc1

damax2

damax1

drmax2

drmax1

Ramin1 Ramin2

Smax2
Smax1

(a)

FIGURE 7.2
Cases 1 (a) and 2 (b) of extreme tolerance combinations for external gear pair with asymmetric 
teeth.
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achieved at the minimum operating temperature, because the CTE 
of steel is lower than that of aluminum. If the material combination 
is the plastic gears and aluminum housing, the minimum effective 
center distance is achieved at the maximum operating temperature, 
because the CTE of plastics is higher than that of aluminum. If gears 
or gear drive housing are made out of the moisture absorbing 
 materials (nylon, for example), the minimum or maximum value of 
operating humidity is selected depending on the gear and housing  
material combination to reduce the effective center distance.

Case 2 (Figure 7.2b): Resulting in the maximum normal backlash and 
radial clearances, and minimum contact ratio. This gear tolerance 
buildup includes the maximum housing center distance, bear-
ing radial plays, and tooth tip radii, and the minimum tooth tip 
diameters, root diameters, and normal tooth thicknesses of mating 
gears. In this case, run-out of both mating gears should increase 
the effective center distance, and the tooth profile, pitch, and helix 

dbc1

Smin2

drmin2dbc2

αwdmax

cmax2

jbnmax

αwcmax

cmax1

Ramax2

dbd1

Smin1

awmax Ramax1

drmin1

damin2

damin1

εαdmin

dbd2

(b)

FIGURE 7.2 (continued)
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tolerances combination does not change the effective tooth thick-
ness. Minimum or maximum operating temperature and humidity 
values are selected depending on gear and housing material combi-
nation to increase the effective center distance.

For an internal gear pair, a tolerance analysis approach is the same, but 
selection of parameters limits is different.

Case 1 (Figure  7.3a): Resulting in the minimum normal backlash and 
radial clearances, and maximum contact ratio. This gear tolerance 
buildup includes the maximum housing center distance, minimum 
bearing radial plays and tooth tip radii, maximum pinion tooth tip 
and root diameters of the pinion, minimum ring gear tooth tip and 
root diameters, and maximum normal tooth thickness. In this case, 
the gear run-outs should increase the effective center distance, and 

damax1

cmin2 jbnmin
drmin2

dbc2

Ramin2Ramin1

drmax1

dbd2

dbd1

εαdmax

awmaxαwcmax
αwdmax

cmin1

dbc1

Smax1

Smax2

damin2

(a)

FIGURE 7.3
Cases 1 (a) and 2 (b) of extreme tolerance combinations for internal gear pair with asymmetric 
teeth.
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the tooth profile, pitch, and helix tolerances combination increases the 
effective tooth thickness. Minimum or maximum operating temper-
ature and humidity values are selected depending on the gear and 
housing material combination to increase the effective center distance.

Case 2 (Figure  7.3b): Resulting in the maximum normal backlash and 
radial clearances, and minimum contact ratio. This gear tolerance 
buildup includes the minimum housing center distance, maximum 
bearing radial plays and tooth tip radii, minimum pinion tooth tip 
and root diameters of the pinion, maximum ring gear tooth tip and 
root diameters, and minimum normal tooth thickness. In this case, 
the gear run-outs should reduce the effective center distance, and the 
tooth profile, pitch, and helix tolerances combination does not affect 
the effective tooth thickness. Minimum or maximum operating tem-
perature and humidity values are selected depending on the gear and 
housing material combination to reduce the effective center distance.

Smin1
damin1

drmax2
jbnmax

cmax2

αwdmin

dbd2

dbd1
εαdmin

dbc2

dbc1

αwcmin

drmin1

cmax1

Ramax1

damax2

awmin

Smin2

Ramax2

(b)

FIGURE 7.3 (continued)
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The tolerance analysis set of equations that allows definition of the mini-
mum and maximum values of the normal backlash, radial clearances, and 
minimum contact ratio is presented below. It is described for helical gears with 
asymmetric teeth. For spur gears these equations are used with the zero helix 
angle, and in the case of symmetric teeth, the pressure angles of the opposite 
tooth flanks are equal. Here is an assumption that the mating gears and gear 
drive housing are made out of different materials, and those  materials could 
be moisture absorbing. The operating condition coefficients are:

For gears:

 λ δ δo t o amb m o ambT T RH RH1 2 1 2 1 21, , ,( ) ( )= + − + − . (7.1)

For gear drive housing:

 λ δ δoh th o amb mh o ambT T RH RH= + − + −1 ( ) ( ) , (7.2)

where To and RHo are operating temperature and humidity, which can have 
minimum, ambient, or maximum values. Symbols 1,2 and h are for the 
 pinion, gear, and housing, accordingly.

For ambient conditions coefficients λo1,2 and λoh are equal to 1.0. For real 
operating conditions major gear and housing dimensions should be adjusted 
by these coefficients:

Center distance:

 a aohmin min= ×λ  and a aohmax max= ×λ . (7.3)

Tooth tip diameters:

 d da o amin , , min ,1 2 1 2 1 2= ×λ  and d da o amax , , max ,1 2 1 2 1 2= ×λ . (7.4)

Root diameters:

 d dr o rmin , , min ,1 2 1 2 1 2= ×λ  and d dr o rmax , , max ,1 2 1 2 1 2= ×λ . (7.5)

Normal tooth thicknesses:

 s sn o nmin , , min ,1 2 1 2 1 2= ×λ

and

 s s f F Fn o n ptmax , , max , , , ,1 2 1 2 1 2 1 2 1 2 1 2= × + + +λ α β . (7.6)



205Tolerancing and Tolerance Analysis

© 2008 Taylor & Francis Group, LLC

Gear face widths:

 b bomin , , min ,1 2 1 2 1 2= ×λ  and b bomax , , max ,1 2 1 2 1 2= ×λ . (7.7)

It is not necessary to apply operating condition coefficients λo1,2 and λoh to 
small dimensions like the tooth tip radii, the bearing radial gaps, or accuracy 
tolerances for operating conditions, because typically it does not make any 
noticeable difference.

Then the operating center distance values awmin and awmax are:

For external gearing:

 a a
F F

w
r r

min min
min min= − − + +1 2 1 2

2 2 2 2
δ δ

and

 a a
F F

w
r r

max max
max max= + + + +1 2 1 2

2 2 2 2
δ δ

. (7.8)

For internal gearing:

 a a
F F

w
r r

min min
max max= − − − −1 2 1 2

2 2 2 2
δ δ

and

 a a
F F

w
r r

max min
min min= + + − −1 2 1 2

2 2 2 2
δ δ

. (7.9)

The reference pitch diameters dp1,2 are:

In the metric system:

 d
m z

p
n o

1 2
1 2 1 2

,
, ,

cos
= λ

β
. (7.10)

In the English system:

 d
z

DPp
o

n
1 2

1 2 1 2
,

, ,

cos
= λ

β
. (7.11)
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The transverse pressure angles αtd and αtc at the reference pitch diameters 
are:

For drive flanks:

 α α
βtd

d= arctan(
tan
cos

) . (7.12)

For coast flanks:

 α α
βtc

c= arctan(
tan
cos

) . (7.13)

The base diameters db1,2 are:

For drive flanks:

 d dbd p td1 2 1 2, , cos= α . (7.14)

For coast flanks:

 d dbc p tc1 2 1 2, , cos= α . (7.15)

The helix angles βbd and βbc at the base diameters are:

For drive flanks:

 β β αbd td= arctan(tan cos ) . (7.16)

For coast flanks:

 β β αbc tc= arctan(tan cos ) . (7.17)

The tooth tip involute angles αadmin1,2 and αadmax1,2 are

 αad
bd

a

d
d

min ,
,

min ,
arccos( )1 2

1 2

1 2
=

and

 αad
bd

a

d
d

max ,
,

max ,
arccos( )1 2

1 2

1 2
= . (7.18)
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The helix angles at the tooth tip diameters βamin1,2 and βamax1,2 are

 β β α
αa

td

ad
min ,

min ,
arctan(tan

cos
cos

)1 2
1 2

=

and

 β β α
αa

td

ad
max ,

max ,
arctan(tan

cos
cos

)1 2
1 2

= . (7.19)

The effective tooth tip involute angles for gears with external teeth from 
(2.34) and (2.35) are:

For drive flanks αedmin1,2 and αedmax1,2:

 αed
bd

a a

d
d R

min ,
,

min , m
arctan(tan(arccos(1 2

1 2

1 2 2
=

− aax ,

max ,

,
)) )

1 2

1 2

1 2

2+ R
d

a

bd

and

 αed
bd

a a

d
d R

max ,
,

max , m
arctan(tan(arccos(1 2

1 2

1 2 2
=

− iin ,

min ,

,
)) )

1 2

1 2

1 2

2+ R
d

a

bd
. (7.20)

For coast flanks αecmin1,2 and αecmax1,2:

 αec
bc

a a

d
d R

min ,
,

min , m
arctan(tan(arccos(1 2

1 2

1 2 2
=

− aax ,

max ,

,
)) )

1 2

1 2

1 2

2+ R
d

a

bc

and

 αec
bc

a a

d
d R

max ,
,

max , m
arctan(tan(arccos(1 2

1 2

1 2 2
=

− iin ,

min ,

,
)) )

1 2

1 2

1 2

2+ R
d

a

bc
. (7.21)

The tooth tip effective involute angles for a gear with internal teeth from 
(2.34) and (2.35) are:

For drive flanks αedmin1,2 and αedmax1,2:

 αed
bd

a a

d
d R

min
min max

arctan(tan(arccos( ))2
2

2 22
=

+
− 22 2

2

R
d

a

bd

max )
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and

 αaed
bd

a a

d
d R

max
max min

arctan(tan(arccos( ))2
2

2 22
=

+
−− 2 2

2

R
d

a

bd

min ) . (7.22)

For coast flanks αecmin1,2 and αecmax1,2:

 αec
bc

a a

d
d R

min
min max

arctan(tan(arccos( ))2
2

2 22
=

+
− 22 2

2

R
d

a

bc

max )

and

 αec
bc

a a

d
d R

max
max min

arctan(tan(arccos( ))2
2

2 22
=

+
− 22 2

2

R
d

a

bc
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From (2.21) the asymmetry factor K is

 K d dbc bd tc td= =1 2 1 2, ,/ cos / cosα α . (7.24)

The involute intersection profile angles νdmin1,2 and νdmax1,2 for gears with 
external teeth are defined from a system of equations:

 inv inv inv invd c td tc( ) ( ) ( ) ( )min , min ,ν ν α α1 2 1 2
2+ = + + ss

d
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1 2
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 (7.25)

and

 cos cosmin , min ,ν νc dK1 2 1 2= , (7.26)
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 (7.27)

and

 cos cosmax , max ,ν νc dK1 2 1 2= . (7.28)

The involute intersection profile angles νdmin2 and νdmax2 for gears with 
internal teeth are defined from a system of equations:
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and (7.24), and

inv inv inv inv
P
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 (7.30)

and (7.26), where Pn is a normal circular pitch at the reference pitch diameter that 
is equal to P mn n= π  or P DPn n= π /  in the metric or English system, accordingly.

Then operating pressure angles are:

For drive flanks αwdmin and αwdmax:
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bd

e

d u
a

min
min

arccos(
( )

)= ±1 1
2

and

 αwd
bd

e

d u
a

max
max

arccos(
( )

)= ±1 1
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, (7.31)

where u = z2/z1 is gear ratio, and + is for the external gearing and – is for the 
internal gearing.

For coast flanks αwcmin and αwcmax:

 α αwc wdKmin minarccos( cos )=

and

 α αwc wdKmax maxarccos( cos )= . (7.32)

The operating transverse tooth thicknesses Swmin1,2 and Swmax1,2 are:

For gears with external teeth:
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For gears with internal teeth:
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(7.34)

For gears with asymmetric teeth the normal backlash is defined between 
the coast tooth flanks, when the drive tooth flanks are in contact. The normal 
backlash values jbnmin1,2 and jbnmax1,2 are
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The normal backlash must be greater than the maximum possible gear 
tooth tip deflection under the load. This allows avoidance of simultaneous 
contact of the opposite tooth flanks with mating gear tooth flanks.

The root clearances cmin1,2 and cmax1,2 are:

For external gearing:

 c a
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For internal gearing:

 c
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The minimal root clearances must be greater than zero to avoid the tooth 
tip/root interference. Actually, this condition is already taken into con-
sideration during the tooth root fillet construction and optimization (see 
Section 5.3). However, operating conditions, including temperature and 
humidity, may reduce root clearances. Besides, low radial clearances may 
result with trapping lubricant in the tooth root area, increased hydraulic 
losses, and reduced gear efficiency, especially for relatively wide spur gears. 
This may require designing the tooth fillet with increased root clearances 
even with some compromise of bending stress reduction.

The transverse operating contact ratios are:

For drive flanks of external mesh εαdmin and εαdmax:
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For coast flanks of external mesh εαcmin and εαcmax:
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For drive flanks of internal mesh εαdmin and εαdmax:
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For coast flanks of internal mesh εαcmin and εαcmax:

 ε
π

α α ααc aec aec w
z

u umin max min(tan tan ( ) tan= − + −1
1 2

2
1 cc min )

and

 ε
π

α α ααc aec aec w
z

u umax min max(tan tan ( ) tan= − + −1
1 2

2
1 cc max ) . (7.43)

The axial operating contact ratio values εβmin and εβmax from (2.135) are

 ε β β
β min

min mintan tan= =b
p

b
p

w bd

bd

w bc

bc

and
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, (7.44)

where pbd and pbc are transverse base circular pitches of the drives and coast 
tooth flanks, accordingly, and bwmin and bwmax are the minimum and  maximum 
values of the operating face width or the axial width of gear engagement 
(see Figure 7.4).

In asymmetric gearing the operating axial contact ratio is the same for the 
drive and coast tooth flanks.

The total operating contact ratios are defined from Equation (2.131):

For drive flanks εγdmin and εγdmax:

 ε ε εγ α βd dmin min min= +  and ε ε εγ α βd dmax max max= + . (7.45)

For coast flanks εγcmin and εγcmax:

 ε ε εγ α βc cmin min min= +  and ε ε εγ α βc cmax max max= + . (7.46)

The minimum total operating contact ratio must be greater than 1.0 for 
smooth tooth pair engagement.

The equations above describe the absolute tolerance analysis approach 
with output parameters (normal backlash, radial clearances, and contact 
ratio) defined at two extreme tolerance combinations, described above as 
cases 1 and 2. As a result, differences between these parameters’ minimum 
and maximum values can be considerable. At the same time, a significant 
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number of dimensions involved in tolerance analysis create a very low 
probability of simultaneous coincidence of extreme tolerance combinations 
of their minimum or maximum values.

Application of the statistical tolerance analysis allows reduction of tol-
erance ranges of output parameters or achievement of required ranges 
with the larger input tolerances, which reduces production cost. According 
to paper [92], “statistical tolerance analysis can be used by designers 
and manufacturing  personnel to take advantage of statistical averaging 
over assemblies of parts, allowing the use of less restrictive tolerances in 
exchange for admitting the small probability of non-assembly.” Reduction 
of this probability can be provided by the statistical process control (SPC) 
that establishes the technological tolerances for critical dimensions that 
are lower than the drawing  tolerances. The statistical tolerance analysis 
approach is also described in [93, 94].

b1

2

1

bw = b2

(a)

1

2

b2

bw

b1

(b)

FIGURE 7.4
Operating face width definition: (a) width bw= b2 < b1, (b) width bw= b1 < b2, (c) gears are assem-
bled with axial shift.
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8
Gear Fabrication Technologies and Tooling

Direct Gear Design® provides improved performance for custom gear 
drives. This is achieved by gear tooth macrogeometry enhancement that also 
requires certain customization of manufacturing technology and  tooling. 
This chapter considers some gear manufacturing issues.

There are many gear fabrication processes. They can be divided into 
two groups:

•	 Machining processes that shape gear and tooth profiles by material 
removal

•	 Forming processes that shape gear and tooth profiles by distortion 
of material or changing material state

Other manufacturing processes that are used for gear as well as many 
other mechanical component fabrications, like heat treatment, surface engi-
neering, coating, etc., are not considered in this book.

8.1  Gear Machining

Table 8.1 presents main machining processes used for spur and helical gears.

8.1.1  Form Machining

In the form gear cutting or grinding process (Figure  8.1) a tool profile is 
the same as a space profile between gear teeth. This process is applicable 
for spur and helical [95] gears. A form machining tool is unique for every 
gear tooth profile, and its cost is practically the same for standard or custom 
directly designed gears with similar geometry. Accuracy of form cutting tool 
positioning relative to the gear blank is very important. The form end mill 
cutter can be used to machine only gears with symmetric teeth (Figure 8.2). 
The optimized root fillet profile for gears with a low number of teeth may 
have an undercut below the form circle. In this case two form disk cutters 
(Figure 8.3) can be used to machine such tooth profiles. The cutter profiles 
are overlapping the root fillet at its bottom, which may result in a little step.
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1

2

FIGURE 8.2
End mill cutter machining. 1 - gear profile (solid contour); 2 - cutter profile (dashed contour).

1

2

FIGURE 8.1
Gear form machining. 1 - gear profile (solid contour); 2 - tool profile (dashed contour).

TABLE 8.1

Spur and Helical Gear Machining Processes

Type of Process Type of Tooling

Form machining Cutting Form disk or end mill cutter, broach, etc.
Grinding Grinding wheel

Generating machining Cutting Hob, shaper cutter, rack cutter, shaver cutter
Grinding Grinding wheel

Contour machining CNC milling Cylinder or ball mill cutter
Wire-cut EDM* Wire
Laser cutting Laser beam
Water jet cutting Water or water and abrasive media mixture stream

* EDM - elastic discharge machining.
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In gear form machining usually one tooth is machined after another. 
When machining of one tooth is completed the indexing device (rotary table) 
positions a gear blank for the next tooth cutting. But there is one type of 
form machining process—gear fly cutting [96] that has a tool (fly cutter) in 
mesh with the gear blank (Figures 8.4 and 8.5). It uses conventional gear hob-
bing machines that have a cutter and gear blank in constant synchronized 
rotation. However, unlike the gear rack generating process, a space between 
teeth is shaped by a whole cutter tooth profile exactly as in conventional 
form machining with the disk cutter (Figure 8.4).

The gear fly cutter also looks similar to the conventional gear disk cutter, 
but all cutter edges are turned at the start angle φ, which is defined as

 φ = arcsin
m n

d
n t

t
, (8.1)

where mn is the normal module of the gear, nt is the number of the fly cutter 
teeth, and dt is the fly cutter pitch diameter.

A gear fly cutter also can be considered the multistart gear hob that has 
just one tooth in each start. The cutter setup angle ϕ relative to the gear plane 
is defined the same way as for gear hobbing;

 φ = β ± ϕ (8.2)

1

22

FIGURE 8.3
Machining of teeth with undercut root fillet. 1 - gear profile (solid contour); 2- form disk  cutters 
(dashed contour).
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(a)

(b)

(c)

FIGURE 8.4
Gear fly cutting schematics: (a) top view, (b) right view, (c) isometric view.
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where β is the gear helix angle, + indicates the gear helix and cutter start 
angle have the same directions (right or left), and – indicates the gear helix 
and cutter start angle have opposite directions.

The adjustable gear fly cutter is shown in Figure 8.5b. It makes it  possible 
to machine gear with different numbers of teeth and modules by using 
 replaceable cutting and angle inserts.

(a)

(b)

FIGURE 8.5
Gear fly cutting: (a) hobbing machine setup, (b) universal fly cutter with inserts.
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8.1.2  Generating Machining

Schematics of the rack generating gear machining process are shown in 
Figure 8.6. In this process a gear blank and tool are engaged in a mesh, and 
all gear teeth are machined practically simultaneously. In traditional gear 
design the tooling (a hob or rack cutter) profile is known at an early stage 
of the gear design procedure. In combination with its position relative to 
the gear center (addendum modification or X-shift), the tooling rack profile 
defines the gear tooth and whole gear profiles.

1

2

(a)

(b)

FIGURE 8.6
(a) Rack generating. 1 - gear profile (solid contour); 2 - hob or rack cutter profile (dashed con-
tour). (b) Asymmetric gear hob cutter.
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Direct Gear Design applies a different approach. The optimized gear tooth 
and whole gear profiles are described without using any redefined tooling 
rack parameters. Then the reverse generating technique is applied to find the 
tooling rack profile using the known gear profile. This technique assumes 
that in the rack/gear mesh every point of the gear tooth profile has its mating 
point on the rack tooth profile. Figure 8.7 demonstrates how the tooling rack 
profile point At position is defined from the gear tooth profile point Ag posi-
tion. In order to find the generating rack profile point At corresponding to the 
gear tooth profile point Ag, the line AgBg perpendicular to the tooth profile 
in point Ag is constructed. Point Bg lies in an intersection of the line AgBg 
with the gear pitch circle. The gear tooth profile and line AgBg are rotated on 
the angle γg relative to the gear center until point Bg reaches its pitch point 
position Bg’, where the gear pitch circle 3 is tangent to the rack pitch line 4. 
Then point Ag is in position Ag’, where gear tooth profile 1’ is tangent to rack 
profile 2’. The line Ag’Bg’ is moved parallel to the rack pitch line 4 on dis-
tance Bg’Bt, which is equal to the length of the arc BgBg’. This movement puts 
point Ag’ in position At at the rack profile that corresponds to point Ag at the 
gear tooth profile. This approach allows definition of any generating rack 
profile point that is related to a certain gear tooth profile point.

In the case where a gear is made by shaping cutting, traditional gear 
design suggests that the shaper cutter parameters and profile are known 
prior to gear design. In combination with its position relative to the gear 
 center (addendum modification or X-shift), the shaper cutter profile defines 
the gear tooth and whole gear profiles. Schematics of the shaper generating 
gear cutting process are shown in Figure 8.8.

In Direct Gear Design the shaper cutter profile is also defined after the 
gear profile is already known. This gear profile is used for the shaper  cutter 
profile reverse generation using a technique similar to that for the rack 
type tooling profile definition. It assumes that in the shaper cutter/gear 

γgAg

At

Bt Bǵ

Aǵ

2´

1´

4
3

2
1

Bg

FIGURE 8.7
Generating rack profile definition. 1 and 1’ - gear profile positions; 2 and 2’ - rack cutter profile 
positions; 3 - gear pitch circle in mesh with rack; 4 - rack pitch line in mesh with gear.
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mesh every point of the gear tooth profile has its mating point on the 
shaper cutter tooth profile.

Figure  8.9 demonstrates how the shaper cutter profile point At position 
is defined from the gear tooth profile point Ag position. In order to find the 
shaper cutter profile point At corresponding to the gear tooth profile point Ag, 
the line AgBg perpendicular to the tooth profile is constructed. Point Bg lies 
in an intersection of the line AgBg with the gear pitch circle. The gear tooth 
profile and line AgBg are rotated on the angle γg relative to the gear  center 
until point Bg reaches its pitch point position Bg’, where gear pitch circle 3 is 
tangent to shaper cutter pitch circle 4. The angle γg is

 γg
g g

pg

B B
d

=
2 '

, (8.3)

where BgBg’ is the length of arc BgBg’, and dpg is the gear pitch diameter in the 
mesh with the shaper cutter.

1

2

(a)

1

2

(b)

FIGURE 8.8
Generating of external (a) and internal (b) gears. 1 - gear profile (solid contour); 2 - shaper  cutter 
profile (dashed contour).
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Point Ag is in position Ag’ where gear tooth profile 1’ is tangent to shaper 
cutter profile 2’. Line Ag’Bg’ is rotated back relative to the shaper cutter center 
on angle γt, that is,

 γ γt g
pg

pt

d
d

= , (8.4)

where dpg is the gear pitch diameter in the mesh with the shaper cutter.
This movement puts point Ag’ in position At at the shaper cutter profile that 

corresponds to point Ag at the gear tooth profile. This approach allows any 
shaper cutter profile point corresponding to the certain gear tooth profile 
point to be defined.

Bt

Bg At

4

2
1

3

Ag
Aǵ

Bǵ
1´

2´

(a)

γg

γt

At

Bt

Bg

Ag
Aǵ

Bǵ
1´

2´

1

2

4
3

(b)

FIGURE 8.9
Generating gear shaper cutter profile definition for external (a) and internal (b) gears. 1 and 
1’ - gear profile positions; 2 and 2’ - shaper cutter profile positions; 3 - gear pitch circle in mesh 
with shaper cutter; 4 - shaper cutter pitch circle in mesh with gear.
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The gear pitch diameter in mesh with a generating tooling (hob, rack, or 
shaper cutters) is not necessarily equal to the operating pitch diameter with 
the mating gear. The pressure angle in mesh with generating tooling can 
be different than the operating pressure angle accordingly. The pressure 
angle in mesh with generating tooling selection is important. Too large of 
a pressure angle results in a tooling profile that will not be able to gener-
ate the required gear profile, because, for example, of the pointed tooling 
tooth tip or its too small radius. Too small (close to zero) of a pressure angle 
negatively affects the cutting condition, gear tooth profile surface finish, and 
tooling life.

One of the benefits of the gear generating process is the possibility of using 
one tool (hob, rack, or shaper cutter) for machining gears with different num-
bers of teeth. This allows reduction of tooling inventory and cost of low- and 
medium-volume gear production where a tooling share per one gear is rela-
tively high. In general, traditionally designed mating gears are machined 
with the same generating gear cutter. However, in mass gear production 
gear cutting (or grinding) machines are typically set up to machine one gear, 
and they use a dedicated set of tools, including the gear cutters.

Directly designed gears require a custom dedicated generating tool for 
every gear with different numbers of teeth. This increases tooling inventory 
and gear cost when production volume is low, although, even in this case, 
application of directly designed gears is beneficial if their improved perfor-
mance justifies some production cost increase, like, for example, in aerospace 
and racing transmissions. In mass gear production a share of custom dedi-
cated machining tool per gear is low, and as a result, the cost of the directly 
designed gears becomes practically equal to that of the traditional ones. This 
makes them applicable for automotive, agriculture, and other industries.

Reverse generating of the tooling profile from the gear profile is applicable 
for involute as well as for noninvolute gears.

8.1.3  Contour Machining

Contour machining (Figure 8.10) is not a highly productive gear fabrication 
method, but unlike form or generating machining, it does not require special 
tooling. This makes it very useful for gear prototyping and quick fabrication 
of a relatively small quantity of gears.

Contour gear machining processes include the CNC milling, wire-cut 
EDM, laser cutting, water jet cutting, etc. In many cases, in order to achieve 
higher accuracy and surface finish, the contour machining process may 
require  several passes. The final pass removes a tiny amount of material. Most 
of these processes are used only for spur gears; the CNC ball  cutter  milling 
can be used for helical gears as well. The contour cutting path (Figure 8.11) 
is defined with offset S from the nominal (average material condition) gear 
 profile. This offset contains a half of the cut width Wc and some additional 
offset that depends on the machining process. This additional offset may 
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3 1

2

(a)

(b)

FIGURE 8.10
(a) Schematic of contour gear machining. 1 - gear profile; 2 - cutting tool; 3 - cutting direction. 
(b) Wire EDM gear cutting. ((b) Courtesy of Accuprompt, Inc., Fridley, Minnesota.)

12

3

S

Wc

FIGURE 8.11
Contour cutting path: 1, nominal (average material condition) gear profile; 2 - tool path; 
machined gear profile; Wc - cut width; S - tool path offset.
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include a stock for final machining, overcut or overburn (for wire-cut EDM 
and laser machining), and a defective layer that should be removed by the 
 following tooth surface treatment operation, for example, polishing.

8.2  Gear Forming

Forming gear fabrication processes like plastic and metal injection mold-
ing, powder metal processing, net forging, stamping, die casting, extrusion, 
gear and worm rolling, etc., have gained popularity in the last few decades, 
providing a high benefit-cost ratio for mass-produced gear drives. Progress 
of these technologies allowed a significant increase in their accuracy. As a 
result, usage of formed gears has also increased considerably. Most of these 
very different forming gear fabrication processes have a similar  tooling com-
ponent that actually defines a gear shape and its accuracy, the  tooling (mold 
or die) cavity. Any gear forming process cavity is dedicated to a particular 
gear profile. This makes Direct Gear Design very acceptable for gear forming 
technology, because production cost of the custom-optimized gears, in this 
case, is practically the same as that of the similar size standard gears [97].

The forming tool cavity has a profile similar to that of the gear, but adjusted 
for shrinkage and warpage (Figure 8.12), which greatly affect gear size and 
shape accuracy. This made proper prediction of shrinkage and warpage crit-
ical for all gear forming technologies, particularly for the plastic injection 
molding process. Plastic gears often have an intricate body shape, including 
ribs or spokes to maintain limited maximum material thickness to exclude 
voids, and for weight and cost reduction. They also are often incorporated 
as one piece with other mechanism components, like, for example, shafts, 
cams, etc. These design specifics, in combination with a huge variety of avail-
able gear polymers and enhancing additives (for increased strength, thermo-
resistance, lubricity, etc.), make prediction of gear shrinkage and warpage 
an utmost difficult task. In many cases gear molders use a trial-and-error 
method with different degrees of success. Typically this “educated guess” 
method works better for gears with a relatively simple body shape (like, for 
example, the flat uniform disk with a small central hole) that are made out of 
generic unfilled polymers.

R.E. Kleiss [98] stated that “plastic does not shrink from the cavity in an 
isotropic fashion” and suggested using different shrinkage factors for main 
gear dimensions, including the tooth tip, root, and base circle diameters, and 
base tooth thickness. S.F. Walsh [99] analyzed effects of material crystallinity, 
orientation, and cooling stress relaxation for shrinkage and warpage pre-
diction of injection molded components. The Autodesk® Moldflow® plastic 
injection molding simulation software [100] predicts “part shrinkage based 
on processing parameters and grade-specific material data.” Realization of 
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these and similar approaches to adjust the mold cavity shape compensating 
molding process distortion requires knowledge of specific data about poly-
mer material grade, tooling design (number of injection gates, their size and 
location, cooling system, etc.), molding process parameters, etc.

A totally different approach to molding distortion compensation was pro-
posed by Y.V. Shekhtman [101]. It was called a Genetic Molding Solution®. 
Similar to how the DNA contains genetic information about the entire live 
organism, the shape of the molded part reflects the originally designed 
profile, polymer material properties, tooling design, and molding process 
parameters. The Genetic Molding Solution method is based on a mathemati-
cal prediction that defines a transformation function describing relations 
between the molded sample gear profile and its actual cavity profile. Once 
this function is defined, the target gear profile replaces the molded sample 
profile as the transformation function variable to calculate the final cavity 
profile. The transformation function is based on a system of trigonometric 
and polynomial equations.

The initial cavity profile coordinates are

 M K Dsh1 = × , (8.5)

where D is the target gear profile data set, presented as X,Y-coordinate points of 
the 2D CAD model constructed for average material conditions, and Ksh is the 
polymer linear mold shrinkage coefficient provided by the material supplier.

1

2

FIGURE 8.12
Gear molding. 1 - gear profile (solid contour); 2 - mold or die cavity profile (dashed contour).
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These initial cavity profile coordinates M1 can be also presented as

 M f P1 = ( ) , (8.6)

where P is the initial sample gear profile data set, presented as X,Y-coordinate 
points provided by the coordinate measuring machine (CMM) inspection of 
actual molded gear, and f is the transformation function describing relations 
between the initial cavity and initial sample gear profiles.

Then the final cavity profile coordinates are

 M f D2 = ( ) . (8.7)

Unlike previously mentioned approaches, the Genetic Molding Solution 
method is based on the “black box” concept and uses only gear and cavity 
inspection results and math that defines the transformation function between 
them. It does not require knowledge of any specific data related to polymer 
material, tooling (except only the linear mold shrinkage  coefficient Ksh), and 
molding process parameters.

Practical application of this method takes eight steps:

 1. Target gear profile definition (data file 1). The X,Y-coordinate points are 
extracted from the gear CAD model and present a desired nominal 
gear profile at average material condition. A number of these coordi-
nate points are typically several hundred per one gear tooth.

 2. Initial cavity profile definition. Initial cavity profile is the scaled-up 
 target gear CAD profile using the polymer linear mold shrinkage 
coefficient Ksh.

 3. Fabrication and inspection of initial mold cavity (data file 2). CMM 
inspection produces the X,Y-coordinate points (several hundred per 
one tooth space) accurately describing the initial cavity.

 4. Molding process optimization. Gears are molded using the initial  cavity, 
without concern about the gear shape. A goal here is to achieve a 
stable and repeatable molding process with the part dimensional 
variation significantly lower than the required accuracy tolerances. 
Any material flaws like voids are not acceptable. Once this goal is 
reached, the molding process must be “locked in” and certified; 
no changes to the process are allowed. Using the optimized process, 
several dozen gears are molded.

 5. Representative gear specimen selection. All molded gears are roll tested 
and inspection data are analyzed. Then one most representative gear 
specimen is selected. This specimen should have average statistical 
tooth-to-tooth and total composite errors (TTE and TCE).



229Gear Fabrication Technologies and Tooling

© 2008 Taylor & Francis Group, LLC

 6. Gear specimen inspection (data file 3). CMM inspection produces the 
X,Y-coordinate points (several hundred per one gear tooth) accurately 
describing the most representative gear specimen. Inspection data of 
the initial  cavity and the gear specimen must have the same axes ori-
entation to provide each gear tooth and its cavity space accordance.

 7. Final cavity profile definition, fabrication, and inspection. The Genetic 
Molding Solution software uses the most representative gear spec-
imen and initial cavity data (files 2 and 3) to generate a transfor-
mation function f. The target gear data (file 1) is then used as the 
variable of this transformation function to define the final cavity 
profile—the output data set. The same axes orientation of all three 
data files is absolutely critical. Any angular rotation or mirroring 
of the data points totally compromises the mold cavity adjustment 
results. The final cavity is then manufactured and given a CMM 
check inspection.

 8. Final gear profile. At last, gears are molded using the final mold cavity. 
The CMM data of the molded gears should be identical to the speci-
fied gear profile, within the molding process accuracy variation.

For successful application of the Genetic Molding Solution method the ini-
tial and final gear molding must be done with the same batch polymer on the 
same molding press using the same tool. A current version of the software 
uses the 2D data sets and works well for spur plastic gears with relatively 
low face width. For helical and wide spur gears this method should be used 
for several (typically two or three) gear sections.

An example of this method application for the cam shaft gear is shown in 
Figure 8.13a. This gear is not particularly molding friendly: It has a metal 
over-molded shaft, two cams, six spokes, and three injecting gates located in 
the middle of these spokes. Mold development for this gear using traditional 
methods requires considerable time and guesswork, and several mold cavity 
iterations. The Genetic Molding Solution method develops the desired cavity 
in a short time by direct calculation, with only one extra (initial) cavity.

The chart in Figure 8.13c shows a comparison of roll test graphs on the ini-
tial most representative gear specimen to the final gear sample. The initial 
gear roll test measurements (TTE and TCE) exceed the required accuracy 
level, but the final gear roll test results fit well inside the TTE and TCE toler-
ance limits.

The Genetic Molding Solution method can significantly accelerate the 
injection plastic mold cavity development. It eliminates a guess component 
of the final cavity prediction and provides its profile definition by use of 
direct calculation. It is applicable not only to plastic molded gears but also 
to other plastic components. It also can be considered for other gear forming 
processes that use mold or die cavities, like power metallurgy, die casting, 
net forging, etc.
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(a) (b)

2

3
1

0° 90° 180° 270° 360°

(c)

FIGURE 8.13
Genetic Molding Solution application: (a) cam shaft gear, (b) gear mold cavity, (c) roll rest chart 
overlay. 1 - total composite tolerance limits; 2 - initial specimen chart (solid contour); 3 - final 
gear chart (dashed contour). (Courtesy of Thermotech Co., Hopkins, Minnesota.)
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9
Gear Measurement

Inspection is a critical stage of the gear production process. It is also abso-
lutely essential for development of new gear transmissions. Comprehensive 
inspection prior to assembly and prototype testing allows potential design 
issues to be isolated from manufacturing errors and makes it possible to 
draw correct conclusions based on the prototype testing results.

Manufacturing of directly designed gears not only requires custom tool-
ing, but also affects gear measurement. This chapter presents definitions of 
main inspection dimensions and parameters for directly designed spur and 
helical, external and internal gears with symmetric and asymmetric teeth.

9.1  Measurement over (between) Balls or Pins

Measurement over (for gears with external teeth) or between (for gears with 
internal teeth) balls or pins is an indirect way to inspect the tooth thickness 
at the given reference diameter. All equations below are defined for gears 
with asymmetric teeth. However, they are applicable for gears with symmet-
ric teeth, assuming that all parameters describing the opposite tooth flanks 
are identical.

9.1.1  Spur Gears

The position of the measuring ball or pin center is shown in Figure 9.1. The 
involute angles αgd and αgc at the ball or pin center location circle diameter dg 
are defined by [102, 103]:

For external gear:

 inv inv inv inv
D
d

D
d z

gd gc d c
bd bc

( ) ( ) ( ) ( )α α ν ν π+ = + + + − 2
. (9.1)

For internal gear:

 inv inv inv inv
D
d

D
d

gd gc d c
bd bc

( ) ( ) ( ) ( )α α ν ν+ = + − − . (9.2)
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FIGURE 9.1
Ball or pin position: (a) external gear, (b) internal gear. D - ball or pin diameter; G - center of ball 
or pin. (From Kapelevich, A.L., Gear Technology, January/February 2011, 60–65. With permission.)
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The ball or pin center location circle diameter dg is

 d
d d

g
bd

gd

bc

gc
= =

cos cosα α
. (9.3)

The involute angles αtd and αtc in the ball or pin contact points Td and Tc are

 α αtd gd
bd

D
d

= arctan(tan )∓  (9.4)

and

 α αtc gc
bc

D
d

= arctan(tan )∓ , (9.5)

where – is for the external gear and + is for the internal gear.
Then a measurement over two balls or pins for the external gear is:

For even number of teeth (Figure 9.2a):

 M d Dg= + . (9.6)

For odd number of teeth (Figure 9.2b):

 M d
z

Dg= ⋅ +cos
π
2

. (9.7)

A measurement between two balls or pins for the internal gear is:

For even number of teeth (Figure 9.3a):

 M d Dg= − . (9.8)

For odd number of teeth (Figure 9.3b):

 M d
n

Dg= ⋅ −cos
π

2
. (9.9)
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π/2n

M

dg
D

(b)

FIGURE 9.2
Measurement over balls or pins for external gears: (a) even number of teeth, (b) odd number of 
teeth. (From Kapelevich, A.L., Gear Technology, January/February 2011, 60–65. With permission.)
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FIGURE 9.3
Measurement between balls or pins for internal gears: (a) even number of teeth, (b) odd number of 
teeth. (From Kapelevich, A.L., Gear Technology, January/February 2011, 60–65. With permission.)
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The ball or pin contact points Td and Tc should always be located on the 
involute flanks. They must not contact the tooth profile at the tooth tip radius 
or chamfer and at the root fillet profile (Figure  9.4). These conditions are 
described by the contact point involute angle limits:

For external gears:

 arccos arccos
d
d

d
d

bd

fd
td

bd

a
< <α  and arccos arccos

d
d

d
d

bc

fc
tc

bc

a
< <α . (9.10)

For internal gears:

 arccos arccos
d
d

d
d

bd

a
td

bd

fd
< <α  and arccos arccos

d
d

d
d

bc

a
tc

bc

fc
< <α , (9.11)

where da is the tooth tip diameter, and dfd and dfc are the drive and coast tooth 
flank form diameters.

For measurement convenience the ball or pin surface should be above the 
gear tooth tips; otherwise the caliper (or micrometer) should have small tips 
to fit between gear teeth. This condition can be presented as

 D d da g> −| |. (9.12)

For external gears this inequality should be solved with Equations (9.1) and 
(9.3), and for internal gear with Equations (9.2) and (9.3), to define a proper 
ball or pin diameter.

9.1.2  Helical Gears

The involute angles αgd and αgc at the ball or pin location circle diameter dg 
are defined by [102]:

Td

3

4
1

2

Tc

D

FIGURE 9.4
Ball or pin diameter selection. 1 - diameter too large—contact point is at the tooth tip corner; 
2 - diameter too small—contact point is at the root fillet; 3 - diameter is acceptable, but the small 
tip caliper (or micrometer) is required to fit between gear teeth; 4 - suitable ball or pin diameter.
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For external gear:

inv inv inv inv
D

d
D

gd gc d c
bd bd

( ) ( ) ( ) ( )
cos

α α ν ν
β

+ = + +
×

+
dd zbc bc×

−
cos β

π2
. (9.13)

For internal gear:

 inv inv inv inv
D

d
D

gd gc d c
bd bd

( ) ( ) ( ) ( )
cos

α α ν ν
β

+ = + −
×

−
ddbc bc× cos β

, (9.14)

where βbd and βbc are the helix angles at the drive and coast base diameters:

 β β αbd d= ×arctan(tan cos ) , (9.15)

 β β αbc c= ×arctan(tan cos ) . (9.16)

Then the ball or pin center location circle diameter dg is defined by (9.3). 
This equation is used for the pin center location circle definition only for 
external helical gears. Cylindrical pins cannot be used to measure the inter-
nal helical gears, because the pin surface cannot be tangent to the concave 
internal helical gear tooth flanks. The ball or pin diameters should also sat-
isfy conditions (9.10) to (9.12). When diameter dg is known, measurements 
over two balls for external helical gears (Figure 9.5) and between two balls 
for internal helical gears (Figure 9.6) are defined by Equations (9.6) and (9.7), 
and (9.8) and (9.9), accordingly.

Measurement over two pins for external helical gears with an even num-
ber of teeth is also defined by Equation (9.6). Measurement over two pins 
for external helical gears with an odd number of teeth is not convenient 
because the shortest distance between the pin centers does not intersect the 
gear axis, which makes it difficult to place the pins between the flat parallel 
tips of the caliper (or micrometer). However, this type of measurement is 
commonly used in gear production, and it is necessary to provide a correct 
definition of measurement over two pins for external helical gears with an 
odd number of teeth.

For external helical gears with an odd number of teeth, the shortest 
distance L between the pin centers does not lie in the transverse section 
of the circle diameter dp (Figure 9.7). This distance definition is described 
in [104] as

 L
d

z
g

g
g=

×
+ × × +

2
4

2 2
2 2

tan
(tan cos( ))

β
λ β π λ

, (9.17)
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where the helix angle at the pin center diameter βg is

 β β
α

β
αg

bd

gd

bc

gc
= =arctan(

tan
cos

) arctan(
tan
cos

)  (9.18)

and the angle λ is a solution of the equation

 
λ

β
π λ

tan
sin( )

g z
− + = 0 . (9.19)

Then the measurement over two pins for external helical gears with an 
odd number of teeth (Figure 9.8) is

 M = L + D. (9.20)

M

FIGURE 9.6
Measurement between balls of internal helical gear. (From Kapelevich, A.L., Gear Technology, 
January/February 2011, 60–65. With permission.)

M

FIGURE 9.5
Measurement over balls of external helical gear. (From Kapelevich, A.L., Gear Technology, 
January/February 2011, 60–65. With permission.)
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9.2  Span Measurement

Span measurement is another way to inspect the tooth thickness at the 
given reference diameter for gears with external symmetric teeth. It is 
the measurement of the distance across several teeth, along a line tangent 
to the base cylinder (Figure 9.9) [103]. It cannot be applied for gears with 
 asymmetric teeth, because it is impossible to have a common tangent line to 
two  concentric base cylinders of asymmetric tooth flanks.

βg

dg

π/z

Lt

L

λ

FIGURE 9.7
Definition of the distance between the pin centers for the helical gears with an odd number of 
teeth. (From Kapelevich, A.L., Gear Technology, January/February 2011, 60–65. With permission.)

M

FIGURE 9.8
Measurement over pins of the external helical gear with an odd number of teeth. (From 
Kapelevich, A.L., Gear Technology, January/February 2011, 60–65. With permission.)
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Span measurement over zw teeth is

 W S z pb w b b= + − × ×( ( ) ) cos1 β , (9.21)

where Sb is the tooth thickness at the base diameter:

 S S d invb b= × + ×cos ( )α α , (9.22)

W

db

(a)

βb

db

W

(b)

FIGURE 9.9
Span measurement: (a) for spur gear, (b) for helical gear. (From Kapelevich, A.L., Gear Technology, 
January/February 2011, 60–65. With permission.)
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S and α are gear tooth thickness and involute profile angle at the reference 
diameter d.

pb is the circular pitch at the base diameter:

 p
d

z
b

b= ×π
, (9.23)

zw is number of teeth for span measurement:

 z z zw w wmin max< < , (9.24)

zwmin is the minimum number of the spanned teeth:

 z
d d S

pw
f b b

b
min =

− −2 2

, (9.25)

zwmax is the maximum number of the spanned teeth:

 z
d d S

p
w

a b b

b
max =

− −2 2

. (9.26)

Calipers, micrometers, or special gages are used for span measurement.

9.3  Composite Gear Inspection

There are two types of composite gear inspection: single- and double-flank 
composite testing [105].

Single-flank composite testing is used for the mating gears at a fixed  center 
distance for transmission error component measurement that includes adja-
cent pitch variation, total accumulated pitch variation, tooth-to-tooth trans-
mission variation, and total transmission variation. This type of testing 
applied to custom directly designed gears is practically the same as for con-
ventional gears, except gears with asymmetric teeth that use both flanks for 
torque or motion transmission. In this case, opposite flanks require separate 
testing. This method provides a good indication of gear pair functionality 
because it checks two mating gears.

Double-flank composite testing has the inspected gear mounted on a 
 rolling fixture (roll tester) with a tight spring-loaded mesh with a master 
gear. Deviations of the center distance during gear rotation indicate the 
tooth-to-tooth composite  error (TTE) and total composite error (TCE). Modern 
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roll testers with a computerized data acquisition system also allow evaluation 
of functional tooth thickness and radial run-out. Double-flank roll testing is a 
quick and  inexpensive way to separate acceptable and defective gears.

However, it does not indicate which gear dimension or accuracy parameter 
is responsible for excessive TTE and TCE. It also does not recognize which 
gear tooth flank is a major contributor to composite errors. Double-flank 
composite testing does not provide sufficient data about actual gear pair 
functionality because it checks only one gear in mesh with the master gear.

This type of testing is also applied to custom directly designed gears. 
However, it requires the custom master gears.

9.4  Elemental Gear Inspection

Coordinate measuring machines (CMM) are used for elemental gear inspec-
tion (Figure 9.10). It allows mapping a surface of all teeth, including the  fillet 
profiles. It provides measurement results for involute flank elemental accu-
racy parameters: run-out tolerance, pitch variation, profile tolerance, and 
lead or tooth alignment tolerance. In Direct Gear Design a whole gear tooth 
profile, including the root fillet, is optimized. Therefore actual accuracy of 
the root fillet profile should be also inspected by a CMM. The gear tooth 
(including the root fillet) CAD profile at the average  material condition is 
used for the CMM inspection. The data set also includes the  involute flank 
and fillet profile tolerances that are established, depending on required gear 
accuracy and also the manufacturing technology. The CMM is programmed 
to indicate if the inspected tooth profile points lie within the corridor defined 
by the CAD tooth profile ± profile tolerance. An example of the CMM inspec-
tion chart of the optimized root fillet profile is shown in Figure 9.11.

FIGURE 9.10
CMM measurement of asymmetric gear. (From Kapelevich, A.L., Gear Technology, January/
February 2011, 60–65. With permission.)
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3
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FIGURE 9.11
CMM inspection chart of the optimized root fillet profile. 1 - nominal (average material condi-
tion) profile (dash-dotted contour); 2 - tolerance corridor (dashed contour); 3 - actual inspected 
profile (solid fat contour).
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10
Comparison of Traditional and 
Direct Gear Design®

The benefits of traditional gear design are well known: It is comprehensively 
standardized and has great availability of design software, tooling, and a 
massive volume of experimental data. It provides acceptable solutions for 
practically all types of gear drive applications. A goal of this chapter is not to 
undermine or criticize the traditional gear design approach, but to compare 
it with Direct Gear Design® to help a gear engineer choose the most suitable 
design method for a particular gear application.

10.1  Comparable Geometry and Stress Analysis

In some publications dedicated to advanced gear geometry, its performance 
results are compared with the standard 20° pressure angle gears, indicating 
impressive advantages of new gear geometry. Although such comparison 
makes some sense, because baseline performance of the standard gears is 
well known, it cannot be considered a fair one. The standard gears are uni-
versally applicable, but they by no means are suitable for high-performance 
demanding applications. New advanced performance gear geometry should 
be compared with the best-known solutions to evaluate its true benefits. 
Such known baseline gear geometry can be found, for example, in aerospace 
gear transmissions. Although such a comparison approach does not usually 
result in very impressive numbers, indicating new gear geometry advan-
tages, it puts this new gear geometry side by side with the best existing one to 
assess its true benefits. Table 10.1 presents directly designed optimized gears 
with symmetric and asymmetric teeth in comparison with the traditionally 
designed aerospace type gears that have a high 25° pressure angle and a full 
circular root fillet. Table 10.2 presents a comparison of the directly designed 
symmetric and asymmetric HCR gears with the traditionally designed HCR 
gears that have the high (>2.0) transverse contact ratio and the full circular 
root fillet. Such gears are also used in aerospace gear transmissions [106].
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10.2  Gear Testing Results Comparison

Experimental comparison of the traditional and Direct Gear Design 
approaches was done by the Rotorcraft division of the Boeing Company 
[107]. Directly designed gears with an asymmetric involute gear tooth form 
were analyzed to determine their bending and contact stresses relative to 

TABLE 10.1

Comparison of Directly and Traditionally Designed Conventional Gears

Design Method
Traditional 
(Baseline) Direct

Tooth Shape Symmetric Symmetric Asymmetric

Gear mesh
Gears Pinion Gear Pinion Gear Pinion Gear
Number of teeth 27 49 27 49 27 49
Module, mm 3.0 3.0 3.0
X-shift 0.09 –0.09 N/A N/A N/A N/A
Root fillet profile Full circle Optimized Optimized
Operating pressure angle 25° 27° 32°/18°*

Drive contact ratio 1.49 1.49 1.49/1.98*

Pitch diameter, mm 81.0 147.0 81.0 147.0 81.0 147.0
Outer diameter, mm 87.540 152.46 87.444 153.133 87.895 153.645
Root diameter, mm 74.285 138.962 74.185 139.80 73.685 139.488
Root clearance, mm 0.628 0.749 0.341 0.380 0.335 0.308
Tooth thickness at pitch 
diameter, mm

4.955 4.469 4.873 4.551 4.873 4.551

Tooth thickness at outer 
diameter, mm

1.543 1.797 1.248 1.244 1.13 1.13

Center distance, mm 114.0 114.0 114.0
Face width, mm 30 30 30 30 30 30
Driving torque, Nm 300 300 300
Bending stress, MPa 210 213 178 

(–15%)
179 

(–16%)
182 

(–13%)
183 

(–14%)
Contact stress, MPa 958 937 (–2%) 886 (–7.5%)
Drive flank specific 
sliding velocity

0.258 0.230 0.241 0.241 0.228 0.228

Bearing load, N 8172 8313 (+2%) 8734 (+7%)
Maximum tooth tip 
deflection, mm

0.0054 0.0049 0.0047 0.0048 0.0071 0.0058

* Drive/coast flank parameter.
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the symmetric involute gear tooth form, which is representative of helicopter 
main drive gears. Asymmetric and baseline (symmetric) toothed gear test 
specimens were designed, fabricated, and tested to experimentally deter-
mine their single-tooth bending fatigue strength and scuffing resistance. 
Also, the directly designed symmetric gears with an analytically optimized 
tooth root fillet form were made and tested to determine their single-tooth 
bending fatigue characteristics relative to baseline specimens with a circular 
root fillet form. The gear test specimens are presented in Figure 10.1.

TABLE 10.2

Comparison of Directly and Traditionally Designed HCR Gears

Design Method
Traditional 
(Baseline) Direct

Tooth Shape Symmetric Symmetric Asymmetric

Gear mesh
Gear Pinion Gear Pinion Gear Pinion Gear
Number of teeth 27 49 27 49 27 49
Module, mm 3.0 3.0 3.0
X-shift 0.15 –0.15 N/A N/A N/A N/A
Root fillet profile Full circle Optimized Optimized
Operating pressure angle 20° 21.5° 24°/16°*

Drive contact ratio 2.04 2.04 2.04/2.48*

Pitch diameter, mm 81.0 147.0 81.0 147.0 81.0 147.0
Outer diameter, mm 89.40 153.60 89.108 154.442 89.576 154.963
Root diameter, mm 73.658 137.822 73.040 138.347 72.394 137.901
Root clearance, mm 0.371 0.389 0.259 0.273 0.322 0.262
Tooth thickness at pitch 
diameter, mm

5.040 4.384 5.0140 4.410 5.020 4.404

Tooth thickness at outer 
diameter, mm

1.18 1.70 1.12 1.13 1.01 1.02

Center distance, mm 114.0 114.0 114.0
Face width, mm 30 30 30 30 30 30
Driving torque, Nm 300 300 300
Bending stress, MPa 147 150 122 

(–17%)
123 

(–18%)
126 

(–14%)
126 

(–16%)
Contact stress, MPa 824 808 (–2%) 774 (–6%)
Drive flank specific 
sliding velocity

0.367 0.323 0.342 0.342 0.336 0.336

Bearing load, N 7882 7961 (+1%) 8108 (+3%)
Maximum tooth tip 
deflection, mm

0.0071 0.0068 0.0073 0.0070 0.0084 0.0081

* Drive/coast flank parameter.
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(a)

(b)

(c)

FIGURE 10.1
Test specimen gear tooth profiles: (a) baseline gear teeth, (b) symmetric gear teeth with opti-
mized fillet, (c) asymmetric gear teeth. (Courtesy of Boeing Co., Philadelphia, Pennsylvania.)
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The objective of this work was to evaluate the potential benefits of asym-
metric involute gear teeth and optimized root fillet geometry for helicopter 
main transmission applications. This involved not only quantifying perfor-
mance improvements achieved by these concepts, but evaluating the prac-
ticality of manufacturing gears with asymmetric teeth and optimized root 
fillet geometry for aerospace applications.

10.2.1  Test Specimen Design and Analysis

Test specimen gears designed for this program were representative of heli-
copter main drive gears in diametral pitch, pressure angle, material, and pro-
cessing. Standardized traditional toothed designs have been developed for 
bending fatigue and scuffing test rigs that Boeing Rotorcraft uses for gear 
research. The standardized test specimen designs were modified to incorpo-
rate the asymmetric tooth configuration, and another for the optimized fillet 
configuration. Specimens of each type were manufactured using aerospace 
production techniques and requirements. A manufacturing approach was 
developed with a goal of reducing material and processing variability. The 
test specimen gear designs were analyzed to predict their bending and contact 
stresses, and compared to stresses predicted for the baseline test specimens.

The single-tooth bending fatigue test gears are 32-tooth gears with groups 
of 4 teeth removed per quadrant to allow for assembly into the single-tooth 
bending fatigue (STBF) test fixture. For comparison, conventional symmet-
ric involute gears and gears with asymmetric involute teeth were designed 
and tested. Both asymmetric toothed and conventional baseline specimens 
employ ground circular root fillets. The asymmetric gear tooth form for the 
STBF test specimens was nominally based on the standard STBF gear speci-
men. This enabled the asymmetric toothed specimen to fit the existing test 
fixture with only minor modifications for tooth load angle, and provided a 
direct comparison between asymmetric and conventional gears of the same 
diameter and face width. Single-tooth bending fatigue specimens with the 
optimized fillets share the same symmetric tooth geometry as the baseline, 
except for the form of the root fillet. The form of the optimized root fillet 
profile was determined analytically. A comparison of the geometry between 
the circular fillet and the optimized fillet geometries is shown in Figure 10.2.

The gear parameters and finite element analysis (FEA) calculated bending 
stresses for the STBF test gears are presented in Table 10.3, and the scuffing 
test gears are within the design experience range of typical main transmis-
sion helicopter power gears. The gear parameters for the scuffing test gear 
specimens are presented in Table 10.4.

10.2.2  Test Specimen Manufacturing

The asymmetric gear specimens, optimized root fillet gear specimens, 
and baseline circular fillet test gears were fabricated by Aero Gear (South 
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Windsor, Connecticut). The specimens were fabricated from aerospace qual-
ity (AGMA Grade 3) 9310 steel with all pertinent records and certifications 
retained. All specimens were low-pressure carburized and high-pressure 
gas quenched. Low-pressure carburizing and high-pressure gas quench 
heat treating processes were performed at Solar Atmospheres (Souderton, 
Pennsylvania). The material for all specimens was from the same lot and the 
heat treat processes, grind stock removal, and shot peening processes for all 
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FIGURE 10.2
Coordinate plot of tooth fillet design geometries. 1 - circular fillet; 2 - optimized fillet. (From 
Brown, F.W., et al., Gear Technology, June/July 2011, 46–55. With permission.)

TABLE 10.3

STBF Test Gear Specimen Parameters

Symmetric 
Gears with 

Circular Fillets 
(baseline)

Symmetric 
Gears with 
Optimized 

Fillets 

Asymmetric 
Gears with 

Circular 
Fillets

Number of teeth of both mating gears 32 32 32
Diametral pitch, 1/in. 5.333 5.333 5.333
Pressure angle 25° 25° 35°/15°*

Pitch diameter, in. 6.000 6.000 6.000
Base diameter, in. 5.4378 5.4378 4.9149/5.7956*

Outside diameter, in. 6.3975 6.3975 6.3864
Root diameter, in. 5.571 5.571 5.558
Form diameter, in. 5.6939 5.6939 5.6581/5.8110*

Circular tooth thickness, in. 0.2895 0.2895 0.2895
Face width, in. 0.375 0.375 0.375
Torque, in.-lb 5000 5000 5000
Load application radius, in. 3.06 3.06 3.06
Calculated maximum bending stress, psi 57,887 48,387 (–16.4%) 54,703 (–5.5%)
* Drive/coast flank parameter.
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specimens were identical. All gears were surface temper etch inspected and 
magnetic particle inspected after the completion of machining.

All specimens produced for this project were ground using conventional 
gear tooth form grinding equipment, including the asymmetric tooth speci-
mens and specimens with optimized root fillet geometry. The form grind-
ing process is often used to grind conventional symmetric gear teeth with 
circular fillets in helicopter main drives. The cubic boron nitride (CBN) 
form grinding wheels were produced from data shown on the engineering 
drawings for both the asymmetric gear teeth and optimized fillet  geometry. 
The CBN gear grinding setup is shown in Figure 10.3. Measurements of the 
gear teeth, including the fillet profile, were carried out using conventional 
CMM gear checking equipment and software.

10.2.3  Test Arrangement and Procedure

Single-tooth bending fatigue tests were performed on nonrotating STBF test 
fixtures, shown in Figure 10.4. These fixtures are loaded by Baldwin-Lima-
Hamilton IV-20 universal fatigue machines through a series of alignment 
 fixtures and in-line load cells. These fatigue machines are capable of 18,000 lb 
(10,000 lb steady load and 8,000 lb alternating load).

For the STBF testing of the subject gears, pulsating fatigue load is applied 
to the tooth through the load link and flexure arrangement shown in 
Figure 10.4. The test gear teeth were cycled at approximately 1200 cycles per 
minute. Prior to the start of testing, alignment of the fixture was verified 
with a strain-gaged baseline specimen. The specimen was instrumented 

TABLE 10.4

Scuffing Test Gear Specimen Parameters

Symmetric Gears with 
Circular Fillets (baseline)

Asymmetric Gears 
with Circular Fillets

Number of teeth of both mating gears 30 30
Diametral pitch, 1/in. 5.000 5.000
Pressure angle 25° 35°/18°
Pitch diameter, in. 6.000 6.000
Base diameter, in. 5.4378 4.9149/5.7063*

Outside diameter, in. 6.400 max 6.403 max
Root diameter, in. 5.459 max 5.510
Form diameter, in. 5.6864 5.6415/5.7607*

Circular tooth thickness, in. 0.3096 0.3096
Face width, in. 0.50 0.50
Drive contact ratio 1.417 1.25
Torque, in.-lb 6000 6000
Calculated maximum contact stress, psi 193,180 174,100 (–9.9%)
* Drive/coast flank parameter.
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with three strain gages across the face width and was used to align the fix-
ture as well as correlate load applied to stress in the fillet of the tooth. For 
fatigue testing, each tested tooth is instrumented with a crack-wire, as seen 
in Figure 10.5. Upon failure of the crack-wire due to the presence of a fatigue 
crack, the test machine is triggered to shut down. The crack-wire is placed 
so that a crack length of 0.050 in. is detected. Magnetic particle inspection 
is used to confirm the presence of a crack. Each tooth specimen was run 
continuously until failure or run-out. For this project, run-out was defined 
as 1.0 × 107 cycles.

FIGURE 10.4
STBF test fixture with asymmetric gear installed. (Courtesy of Boeing Co., Philadelphia, 
Pennsylvania. From Brown, F.W., et al., Gear Technology, June/July 2011, 46–55. With permission.)

FIGURE 10.3
Gear form grinding setup with CBN grinding wheel. (Courtesy of Aero Gear, South Windsor, 
Connecticut. From Brown, F.W., et al., Gear Technology, June/July 2011, 46–55. With permission.)
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Scuffing tests of asymmetric gear specimens and baseline specimens were 
conducted on a gear research test stand. The test stand is a split-coupling 
torque design. The test gears are outboard of the main housing and can be 
quickly inspected or changed by removal of a simple cover (see Figure 10.6).

A separate lubrication system serves the test specimen chamber, which 
was isolated from the test stand drive lubrication system. The lubricant sup-
ply to the test gears could be heated or cooled to supply lubricant at a con-
stant temperature to the test gears. The test gears were subjected to a series 
of 15 min long, incrementally loaded runs. At the end of each 15 min run, a 
visual evaluation of the test gear teeth was conducted. If the condition of the 

FIGURE 10.5
Asymmetric STBF test tooth with crack-wire installed. (Courtesy of Boeing Co., Philadelphia, 
Pennsylvania. From Brown, F.W., et al., Gear Technology, June/July 2011, 46–55. With permission.)

FIGURE 10.6
Scuffing test rig with cover removed and test specimen gears installed. (Courtesy of Boeing 
Co., Philadelphia, Pennsylvania. From Brown, F.W., et al., Gear Technology, June/July 2011, 
46–55. With permission.)
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gears did not meet the criteria for scuffing failure, the next higher incremental 
load was applied. This procedure was continued until a scuffing failure was 
observed. For purposes of this test program, a scuffing failure was declared 
when 25% of the available tooth contact surface exhibited visible evidence of 
radial scratch marks, characteristic of scuffing, on a minimum of 10 teeth.

10.2.4  Test Results

At the conclusion of the single-tooth bending fatigue tests, all crack locations 
were verified both visually and using magnetic particle inspection (MPI), as 
shown in Figure 10.7. Cracks were also opened to determine the origins and 
confirm the validity of the results. In Figure 10.8 the dark dashed line represents 
the extent of fatigue propagation, and the arrow indicates the fracture origin.

Fatigue results of the STBF tests of the asymmetric tooth, the optimized root 
fillet tooth, and the baseline specimens are presented in Figure 10.9. Curves 
for the optimized root fillet data and the asymmetric  data were assumed to be 
parallel to the baseline curve.

0.3 in.

FIGURE 10.7
Cracked STBF test gear tooth showing MPI crack indication. (Courtesy of Boeing Co., 
Philadelphia, Pennsylvania. From Brown, F.W., et al., Gear Technology, June/July 2011, 46–55. 
With permission.)

0.030 in

FIGURE 10.8
Fractograph of STBF test tooth. (Courtesy of Boeing Co., Philadelphia, Pennsylvania. From 
Brown, F.W., et al., Gear Technology, June/July 2011, 46–55. With permission.)
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Typical scuffing failures are shown in Figures 10.10 and 10.11. These figures 
show the vertical scratches indicative of a scuffing failure, associated with the 
breakdown of the separating lubricant film between the gears. Figure 10.12 
shows the scuffing results for baseline and asymmetric gears. The 35° pres-
sure angle asymmetric gears showed an improvement of approximately 25% 
in the mean scuffing load (torque) compared to the baseline symmetric tooth 
specimens. The mean 3-sigma levels are also shown, based on a population 
of eight baseline data points and six asymmetric data points.

10.2.5  Results Analysis

The STBF test results shown in Figure  10.9 indicate the asymmetric tooth 
gear design mean endurance limit was significantly higher, on the order of 
16% higher, than the mean endurance limit of the baseline symmetric tooth 
design. It should be pointed out that there are relatively few data points, 
four failure points and one run-out (included as a failure point in the data 
analysis), for the asymmetric tooth specimens. Nonetheless, the results of 
this testing indicate that asymmetric teeth offer an improvement in bending 
fatigue strength, although additional testing would serve to refine the mag-
nitude of the improvement. It is interesting to note that the FE  analysis of 
the asymmetric tooth STBF design predicted a 5.5% reduction in maximum 
bending stress compared to the baseline  symmetric design.
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The STBF results for the optimized fillet geometry design showed an 
improvement in mean gear tooth bending fatigue strength exceeding 10%, 
based on limited testing—six failure points. The data points for these tests 
display more variation (scatter) than either the baseline data or the asymmet-
ric tooth data. Post-test evaluation of the test specimens and observations of 
the fracture surfaces did not indicate any anomalies that could explain the 
variation, such as variations in optimized fillet form/dimensions or speci-
men metallurgy. One theory is that the test fixture was damaged while test-
ing at the higher load levels. The FEA of the optimized fillet design indicated 
a reduction in maximum bending stress (calculated) of 16.4% compared to 
the baseline circular fillet design. While not tested in this project, the com-
bination of asymmetric teeth and optimized fillet geometry together, in the 

FIGURE 10.11
Close-up view of a representative scuffed tooth. (Courtesy of Boeing Co., Philadelphia, 
Pennsylvania. From Brown, F.W., et al., Gear Technology, June/July 2011, 46–55. With permission.)

0.5 in

FIGURE 10.10
Scuffing failure of baseline test gear. (Courtesy of Boeing Co. Philadelphia, Pennsylvania. 
From Brown, F.W., et al., Gear Technology, June/July 2011, 46–55. With permission.)
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same gear design, may offer improvements in tooth bending fatigue strength 
greater than either of the concepts taken individually. The decision was made 
early in this project to test each concept separately. The reasoning was that 
if one concept or the other proved to be impractical from a manufacturing 
standpoint, data of value would still be attained for the other concept. Since 
both concepts appear viable from a manufacturing standpoint, their combi-
nation in one gear design is worth further investigation.

The scuffing test results (Figure 10.12) indicated an improvement in mean 
scuffing load (torque) to failure of 25% for the asymmetric tooth gear speci-
mens compared to the baseline symmetric tooth specimens. The improve-
ment in calculated mean 3-sigma scuffing performance is even greater. 
Although based on limited testing, eight baseline points and six asymmetric 
tooth data points, this is a very significant improvement in scuffing resis-
tance due to asymmetric gear tooth geometry. This improvement was in the 
primary drive direction of the asymmetric teeth. The opposite (coast) direc-
tion scuffing performance of the asymmetric teeth was not tested in this 
project. This improvement in scuffing resistance can be utilized to advantage 
in high-speed, scuffing-critical gear applications.

10.2.6  Testing Results Conclusion

Test results demonstrated higher bending fatigue strength for both the 
asymmetric tooth form and optimized fillet than for baseline designs. 
Scuffing resistance was significantly increased for the asymmetric tooth 
form  compared to a traditional symmetric involute tooth design.
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10.3  Design Method Selection

Analytical and experimental comparison of traditional and direct approaches 
to gear design indicates certain benefits of Direct Gear Design for custom gear 
drives. These benefits mainly include bending stress reduction that increases 
tooth strength, and contact stress reduction that increases the tooth surface 
endurance and wear resistance, reducing the pitting and scuffing probability. 
Stress reduction provided by advanced tooth geometry allows boosting of the 
gear drive power transmission density, increasing its load capacity or reduc-
ing its size and weight, prolong its life, and improve its reliability. Possible 
stress and gear size reduction leads to potential cost reduction by using a 
reduced amount or less expensive materials.

Application of the asymmetric tooth profile with a higher pressure angle, 
besides the stress reduction, provides lower specific sliding velocities and 
higher thickness of the elastohydrodynamic lubricant film (because of larger 
tooth contact curvature radii) on the drive flanks of the gear teeth. This leads 
to increased gear efficiency. Independent parameter selection of the drive 
and coast flanks, and the root fillet profile of asymmetric teeth, also makes it 
possible to reduce gear tooth stiffness, noise, and vibration.

Now the gear designer has a choice to make: which gear design approach is 
more suitable for a particular gear drive application. Table 10.5 summarizes 
the main characteristics of both traditional and Direct Gear Design methods.

Further development of the Direct Gear Design method, and testing 
database accumulation, should encourage its implementation in custom 
gear transmission.
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TABLE 10.5

Summary of Traditional and Direct Gear Design

Traditional Gear Design Direct Gear Design

Basic Principle
Gear design is driven by standards and 
manufacturing convenience

Gear design is driven by application, 
and product technical and market 
performance requirements

Advantages
•	Universal applicability
•	Availability of standard design manuals, 

software, and tooling
•	Gear interchangeability
•	Low tooling inventory
•	Vast accumulated experience and 

testing database

High gear drive performance provided by 
bending and contact stress reduction includes:
•	High power transmission density—high 

load capacity or reduced size and weight
•	Longer life
•	Lower cost
•	Lower noise and vibration
•	Higher efficiency and reliability

Drawbacks
Limited gear drive performance Requires custom dedicated tooling for every 

gear; limited experience and testing database

Typical Applications
Standardized gears and gear drives: Custom gear drives:
•	Stock gears
•	Gearboxes with interchangeable gear sets
•	Low production volume machined gears

•	Formed gears fabricated by plastic and 
metal injection molding, powder metal 
processing, die cast, net forging, etc.

•	High production volume machined gears
•	Gear drives with special requirements 

and extreme applications (aerospace, 
racing, automotive transmissions, etc.)





261© 2008 Taylor & Francis Group, LLC

11
Implementation Examples

The Direct Gear Design® approach has been implemented in many custom 
gear drives. This chapter describes three such implementation examples pre-
senting different applications, gear tooth geometries, materials, and fabrica-
tion technologies.

11.1  Speed Boat Gearbox

The Marine Technology, Inc. turbine race boat powered by twin Lycoming 
T55 turboshaft engines required light and compact gearboxes. The boat 
power train arrangement also necessitated a significant vertical offset 
between the turbine shaft and propeller shaft. This offset defined the gear-
box envelope with two idler gears. Its schematic arrangement is shown in 
Figure 11.1.

11.1.1  Gear Design

Gearbox data:

•	 Lycoming T55 turboshaft engine maximum power: 3000 HP
•	 Turbine shaft RPM: 16,000
•	 Gear ratio: 2:1
•	 Vertical input/output shaft offset: 21.20 in.
•	 Overall gearbox dimensions (length × height × width): 16 × 34 × 5 in.
•	 Gearbox weight: 270 lb

The gearbox was designed and manufactured by Three Sigma Manufactur-
ing, Inc. (Kent, Washington) that subcontracted AKGears, LLC (Shoreview, 
Minnesota) for gear design and optimization. The high contact ratio (HCR) 
spur gear tooth geometry was chosen to provide high load capacity, low 
vibration level, and zero axial thrust load on the bearings. Symmetric gear 
tooth profiles were selected because of two idler gears that have both tooth 
flanks equally loaded. The tooth root fillets were optimized to minimize 
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bending stress concentration. Table 11.1 presents the gear design data and 
the stress analysis results, and gear tooth profiles are shown in Figure 11.2.

11.1.2  Gear Fabrication

Considering low production volume (only two gearboxes required), a unique 
gear wire-cut EDM fabrication technology was applied. Unlike conventional 
gear cutting and grinding, it did not require special cutting tools. Gears 
were made out of the AISI 9310 steel, with a surface hardness of Rc 59-61, core 
hardness of about Rc 36, and final carburized depth of 0.020–0.030 in. The 
wire cutting process, although proprietary, can be summarized as follows: 
The gear blanks were roughly turned and heat treated to required core hard-
ness. Final turning of the blanks was then performed and some preparatory 
machining carried out in order to begin the EDM wire cutting process. The 
tooth forms were preliminarily wire cut, leaving only 0.005 in. stock. Then 
gears were carburized and quenched. It should be noted that the tooth tips 
were not carburized. The final tooth geometry was then generated by the 
wire-cut EDM process, with special positioning techniques used to ensure 
uniform stock removal. A 10 μin. Ra surface finish was achieved. The inter-
nal spline is also produced in the same fixture, providing for extremely close 
concentricity to the gear teeth. The gears were then treated with the REM 
process [108], which also rounded all sharp edges and improved the surface 
finish on the tooth flanks to 4 μin Ra.

4

21.200"
3

2

1

FIGURE 11.1
Gearbox arrangement. 1 - input gear; 2 - idler gear 1; 3 - idler gear 2; 4 - output gear.
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TABLE 11.1

Speedboat Gearbox Data

Gear Input Gear Idler Gear 1 Idler Gear 2 Output Gear

Number of teeth 40 48 64 80
Diametral pitch, in. 8.000 8.000 8.000 8.000
Pressure angle, ° 21.0 21.0 21.0 21.0
Pitch diameter, in. 5.000 6.000 8.000 10.000
Base diameter, in. 4.6679 5.6015 7.4686 9.3358
Tooth tip diameter, in. 5.321/5.326 6.326/6.331 8.315/8.323 10.307/10.315
Maximum form diameter, in. 4.763 5.758 7.7385 9.7368
Root diameter, in. 4.623/4.629 5.629/5.635 7.632/7.638 9.633/9.641
Tooth thickness at pitch 
diameter, in.

0.1906/0.1931 0.1906/0.1931 0.1906/0.1931 0.1906/0.1931

Tooth tip radius, in. 0.010/0.013 0.010/0.013 0.010/0.013 0.010/0.013
Tooth tip land, in. 0.028/0.040 0.028/0.040 0.035/0.049 0.042/0.055
Face width, in. 1.650 1.650 1.550 1.550
Center distance, in.  5.5000 ± 0.0025 7.0000 ± 0.0025 9.0000 ± 0.0025

Accuracy and Inspection Parameters
Accuracy grade per AGMA 
2000-A88 [105]

Q11B Q11B Q11B Q11B

Run-out tolerance, in. 0.0012 0.0012 0.0013 0.0014
Pitch variation, in. ±0.0003 ±0.0003 ±0.0003 ±0.0003
Profile tolerance, in. 0.0004 0.0004 0.0004 0.0004
Lead tolerance, in. 0.0004 0.0004 0.0004 0.0004
Pin diameter, in. 0.250 .250 .250 .250
Measurement over pins, in. 5.406/5.412 6.408/6.414 8.411/8.416 10.412/10.418

Tolerance Analysis Results
Operating pressure angle, °  20.90/21.10 20.92/21.08 20.93/21.04
Operating contact ratio  2.01/2.11 2.04/2.15 2.02/2.15
Operating normal backlash, in.  0.003/0.013 0.003/0.013 0.003/0.014
Radial clearance, in. 0.016/0.029 0.018/0.032 0.020/0.034 0.017/0.030

Stress Analysis Results
Power, HP 3,000
RPM 16,000 13,333 10,000 8,000
Torque, in.-lb 11,657 13,988 18,651 23,314
Bearing load, lb 4,995 4,995 4,995 4,995
Bending stress, psi 35,920 34,380 36,720 36,530
Contact stress, psi  142,200 133,470 115,423
Gear material AISI 9310 (carburized, harden)
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11.1.3  Gearbox Performance Testing

Performance testing was done with the gearbox installed in the race vehicle. 
Gearbox performance was judged by its temperature, vibration level, and 
overall vehicle performance. There were no major maintenance issues, tem-
perature was in the range considered safe, and vibration was minimal. The 
vehicle ultimately exceeded 210 mph numerous times and the gearbox proj-
ect was deemed a success. Photos of the input gear teeth, gears, mounted 
gearbox, and racing boat are shown in Figures 11.3 to 11.6.

11.2  Turboprop Engine Gearbox

The first known application of gears with asymmetric teeth in the aerospace 
industry was for the TV7-117S turboprop engine gearbox [109–111]. The 
engine and gearbox were developed by Klimov Corporation (St. Petersburg, 
Russia) with the assistance of Central Institute of Aviation Motors (CIAM, 
Moscow, Russia) for a commuter airplane Ilyushin Il-114 and produced by 
Chernyshev Enterprise (Moscow, Russia). The main characteristics of its 
gearbox are presented in Table 11.2.

The TV7-117S gearbox arrangement is shown in Figure 11.7. This arrange-
ment was used in an older generation of Russian turboprop engines AI-20 
and AI-24, and it has proved to provide high-power transmission density for 
required gear ratios. The first planetary differential stage has three planet 
gears. The second “star” type coaxial stage has five planet (idler) gears and a 
stationary planet carrier. The first-stage sun gear is connected to the engine 

(a) (b)

(c) (d)

FIGURE 11.2
Tooth profiles: (a) input gear, (b) idler gear 1, (c) idler gear 2, (d) output gear.
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turbine shaft. Its ring gear is connected with the second-stage sun gear, and 
its planet carrier is connected to the second-stage ring gear and output pro-
peller shaft. This arrangement makes it possible to transmit about 33% of the 
engine power through the first-stage carrier directly to the propeller shaft, 
bypassing the second stage. This allows the size and weight of the second 
stage to be reduced, transmitting only 67% of engine power from the first-
stage ring gear to the second-stage sun gear, and then through the planets to 
the second-stage ring attached to the propeller shaft.

All gears have an asymmetric tooth profile. Gear geometry and accuracy 
parameters, and operating torques and stresses are presented in Table 11.3. All 
gears were made out of the forged blanks of the steel 20KH3MVF (EI-415). Its 

FIGURE 11.3
(See color insert.) Input gear teeth. (Courtesy of Three Sigma Manufacturing, Inc., Kent, 
Washington.)

FIGURE 11.4
(See color insert.) Gears in mesh. (Courtesy of Three Sigma Manufacturing, Inc., Kent, 
Washington.)
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FIGURE 11.5
(See color insert.) Mounted gearbox. (Three Sigma Manufacturing, Inc., Kent, Washington.)

FIGURE 11.6
(See color insert.) Race boat. (Courtesy of Three Sigma Manufacturing, Inc., Kent, Washington.)

TABLE 11.2

TV7-117S Turboprop Engine Data

Input turbine RPM 17500
Output prop RPM 1200
Total gear ratio 14.6:1
Overall dimensions, mm:
•	Diameter 520
•	Length 645

Gearbox weight, N 1050
Maximum output power, hp 2800
Extreme output power, hp 3500
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chemical composition includes: Fe, base material; C, 0.15–0.20%; S, <0.025%; 
P, <0.030%; Si, 0.17–0.37%; Mn, 0.25–0.50%; Cr, 2.8–3.3%; Mo, 0.35–0.55%; 
W, 0.30–0.50%; Co, 0.60–0.85%; and Ni, <0.5%.

Protuberance hobbing was applied for the sun and planet gear machin-
ing prior to carburizing and quenching. A custom protuberance hob (see 
Figure 11.8) was used to provide a final cutting of the gear tooth root fillet, 
leaving the grinding stock only on the tooth involute flanks. This allowed 

1st Stage 2nd Stage

Prop ShaftTurbine Shaft

Z3́ Z3̋

Z2́
Z2̋

Z1́
Z1̋

(a)

(b) (c)

FIGURE 11.7
Gearbox arrangement (a), first (b) and second (c) stages with rotation directions (view from 
input shaft). ((a) from Novikov, A.S., et al., Gear Technology, January/February 2008, 60–65. 
With permission.)
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avoiding possible grinding “hotspots” that propagate initial cracks in the 
root area. Nonground tooth root fillet remains residual compressive stress 
(about 300–600 MPa [113]) after heat treatment, which increases tooth 
bending strength. Protuberance gear hob profile parameters are shown in 
Table 11.4. The sun or ring gear tooth profile after protuberance hobbing is 
shown in Figure 11.9.

The ring gear involute flanks were preliminarily machined with a special 
asymmetric tooth shaper cutter. Then the form disk mill cutter was used to 

∆tc

∆td

∆gc
∆gd

Hat

Ht

γtc γtd

RtdRtc

Stπmt

αtc αtd

FIGURE 11.8
Protuberance gear hob profile.

TABLE 11.4

Protuberance Gear Hob Profile Data

Stage First Second

Gear Sun Planet Sun Planet

Number of teeth 28 41 38 31
Hob module, mm mt 2.876 2.905 3.224 3.224
Hob tooth thickness at pitch line, mm St 2.356 2.480 2.312 2.521
Hob tooth addendum, mm Hat 2.124 2.157 1.858 2.124
Minimal whole depth, mm Ht 7.80 7.80 8.20 8.20
Drive profile angle, ° αtd 29.0 30.0 29.0 29.0
Coast profile angle, ° αtc 19.064 20.631 19.064 19.064
Drive protuberance angle, ° γtd 6.0 6.0 6.0 6.0
Coast protuberance angle, ° γtc 6.0 6.0 6.0 6.0
Drive protuberance offset, mm Δtd 0.29 0.31 0.31 0.31
Coast protuberance offset, mm Δtc 0.29 0.31 0.31 0.31
Drive grinding stock, mm Δgd 0.17 0.20 0.20 0.20
Coast grinding stock, mm Δgc 0.17 0.20 0.20 0.20
Drive side tip radius, mm Rtd 1.00 1.00 1.20 1.10
Coast side tip radius, mm Rtc 0.65 0.70 0.80 0.80
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cut root fillets. The ring gear tooth profile after machining, and before heat 
treatment, is shown in Figure 11.10. Its parameters are presented in Table 11.5.

Unlike gears with symmetric teeth, the asymmetric gear blanks’ position 
relative to the cutting tool is critical. Otherwise, the drive flank of one gear 
can be positioned in contact with the coast profile of the mating gear, which 
makes assembly impossible. After the tooth cutting the gears are carburized 
and heat treated to achieve a tooth surface hardness of >59 HRC with the 
case depth of 0.6–1.0 mm. The core tooth hardness is 33–45 HRC.

The MAAG generating gear grinding machines were used for final gear 
tooth grinding. Simultaneous processing of both flanks of asymmetric teeth 
required a special grinding machine setup. The tip/root relief profile modi-
fication was applied to the driving tooth flanks of the sun gears and both 
flanks of the planet gears (see Figure 11.11). Flank modification parameters 
are presented in Table 11.6.

Assembly of the gearbox includes selection of planet gears and their initial 
angular orientation based on transmission error function of every gear. All 
planet gears were classified by transmission error (TE) function in several 

∆gd ∆gc

FIGURE 11.9
Sun or planet tooth profile after protuberance hobbing. Δgd and Δgc - drive and coast flank 
grinding stocks.

RB

φ

∆gd∆gc

∆c ∆d

FIGURE 11.10
Ring gear tooth space profile. Δgd and Δgc - drive and coast flank grinding stocks; Δd and Δc - drive 
and coast flank undercuts; R - root fillet radius; B - fillet cut width; φ - fillet angle.
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groups. Each group has planet gears with the similar TE function. Then dur-
ing assembly position and orientation of each planet gear depend on its TE 
function profile, providing better engagement of the driving flanks and load 
distribution between planet gears [5].

Application of the asymmetric teeth helped to provide a very low weight-
to-output torque ratio, a significantly reduced noise and vibration level, and 
cut down duration and expense of operational development [109]. A section 

TABLE 11.5

Ring Gear Root Fillet Data

Stage First Second

Gear Ring Ring

Number of teeth 107 97
Fillet radius, mm R 0.60/0.70 0.65/0.75
Fillet cut width, mm B 1.20/1.40 1.30/1.50
Fillet angle, ° φ 3.4 3.3
Drive flank fillet undercut, mm Δd 0.06/0.08 0.06/0.08
Coast flank fillet undercut, mm Δc 0.06/0.08 0.06/0.08
Drive grinding stock, mm Δgd 0.19/0.20 0.19/0.20
Coast grinding stock, mm Δgc 0.19/0.20 0.19/0.20

Rr

Tr

Hr

Lowest Involute 
Profile Point

Highest Involute 
Profile Point

FIGURE 11.11
Tooth flack modification chart. Hr - tip relief height; Tr - tip relief depth; Rr - root relief depth.
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of the first-stage sun gear is shown in Figure  11.12. Photos of the gears 
and gear assemblies of the TV7-117S gearbox are shown in Figures  11.13 
to 11.18. Figure 11.19 shows the Ilyushin Il-114 commuter airplane with the 
TV7-117S engines.

11.3  Seed Planter Gearboxes

Direct Gear Design was applied for helical crossed-axis plastic gears of the 
John Deere’s Pro-Shaft cable drives. Their drives replace chain/sprocket 
drives in agricultural machinery to provide value-improved performance, 
operation safety, and a trouble-free way to power seed meters of the John 
Deere MaxEmerge 2™ and MaxEmergePlus™ Planters (Figure  11.20). The 
Pro-Shaft cable drive is shown in Figure  11.21. Figure  11.22 shows the 
Pro-Shaft cable drive gearboxes. Gear geometry and accuracy parameters, 
and operating torques and stresses are presented in Table 11.7.

TABLE 11.6

Tooth Flank Modification Parameters

Stage First Second

Gear Sun Planet Sun Planet

Number of teeth 28 41 38 31
Tip relief height, mm Hr 2.5/3.5 2.0/3.0 3.0/4.0 2.0/3.0
Tip relief depth, mm Tr 0.006/0.010 0.002/0.006 0.008/0.012 0.003/0.008
Root relief depth, mm Rr 0.008/0.014 0.002/0.006 0.010/0.017 0.002/0.008

FIGURE 11.12
(See color insert.) First-stage sun gear section. (Courtesy of Chernyshev Enterprise, Moscow, 
Russia.) (From Novikov, A.S., et al., Gear Technology, January/February 2008, 60–65. With permission.)
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Gears are designed and made by Kleiss Gears, Inc. (Grantsburg, Wisconsin). 
The mold tool development had presented an intricate task and took signifi-
cant effort, because of the thick wall sections and very high helix angle. An 
unscrewing mechanism was incorporated in the molding tool to minimize 
stress on the teeth during ejection of the helical gear. The thick wall sections 

FIGURE 11.14
(See color insert.) First-stage assembly. (Courtesy of Chernyshev Enterprise, Moscow, Russia.) 
(From Novikov, A.S., et al., Gear Technology, January/February 2008, 60–65. With permission.)

FIGURE 11.13
(See color insert.) First-stage sun gear. (Courtesy of Chernyshev Enterprise, Moscow, Russia.) 
(From Novikov, A.S., et al., Gear Technology, January/February 2008, 60–65. With permission.)
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of these gears required the cycle time to be much longer than is usual in the 
industry, well over a minute. Figure  11.23 presents the seven-tooth pinion 
molding cavity.

The CMM scanning was employed for gear measuring to define exact 
dimensions and accuracy during tooling and molding process development. 
For continuing production quality control the roll test inspection was used.

FIGURE 11.15
(See color insert.) Second-stage sun gear. (Courtesy of Chernyshev Enterprise, Moscow, Russia.) 
(From Novikov, A.S., et al., Gear Technology, January/February 2008, 60–65. With permission.)

FIGURE 11.16
(See color insert.) Second-stage planet gear carrier assembly. (Courtesy of Chernyshev Enterprise, 
Moscow, Russia.) (From Novikov, A.S., et al., Gear Technology, January/February 2008, 60–65. 
With permission.)
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FIGURE 11.17
(See color insert.) Second-stage planet gear carrier assembly. (Courtesy of Chernyshev Enterprise, 
Moscow, Russia.)

FIGURE 11.18
(See color insert.) Assembled gearbox. (Courtesy of Chernyshev Enterprise, Moscow, Russia.) 
(From Novikov, A.S., et al., Gear Technology, January/February 2008, 60–65. With permission.)
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FIGURE 11.19
(See color insert.) Ilyushin Il-114 commuter airplane.

FIGURE 11.20
(See color insert.) Deere MaxEmergePlus planter. (Courtesy of John Deere Co., Moline, Illinois.)

FIGURE 11.21
Pro-Shaft cable drive. (Courtesy of John Deere Co., Moline, Illinois.)
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The Pro-Shaft cable drives present ultimate metal-to-plastic gear conversion, 
replacing the chain/sprocket drives in agricultural machinery. According 
to John Deere Company’s website [114] the Pro-Shaft drive provides many 
advantages over a conventional chain drive, including:

•	 Durable, lubricated for life, and maintenance-free
•	 No more chain knock-offs in high-residue planting situations
•	 No more need for trash shields on your planter
•	 Skips in the field are eliminated due to the removal of chain knock-off 

and rusty chain links
•	 Chain and sprocket maintenance is eliminated, so you can stay in 

the field longer
•	 Completely safe

(a) (b)

FIGURE 11.22
(See color insert.) Pro-Shaft cable drive gearboxes: (a) 19:7 gear ratio, (b) 7:28 gear ratio. (Courtesy 
of John Deere Co., Moline, Illinois.)
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TABLE 11.7

Gear Geometry Data

Gear Drive 19:7 Ratio 7:28 Ratio

Gear Driving Driven Driving Driven

Nominal number of teeth 19 7 28
Diametral pitch, 1/in. 10 10 10
Normal pressure angle, ° 25 25 25
Helix angle, ° 45 45 45
Hand of helix Left Left Left
Helix lead, in. 8.4415 3.1100 12.4401
Shaft angle, ° 90 90
Pitch diameter, in. 2.6863 0.9899 3.9598
Base diameter, in. 2.2432 0.8264 3.3057
Tooth tip diameter, in. 2.802/2.812 1.239/1.245 4.077/4.087
Root diameter, in. 2.366/2.376 0.793/0.803 3.630/3.640
Normal tooth thickness at pitch diameter, in. 0.116/0.120 0.179/0.183 0.116/0.120
Tooth tip radius, in. 0.010 0.010 0.010
Normal tooth tip land, in. 0.017/0.019 0.012/0.014 0.018/0.020
Face width, in. 0.840 1.000 0.840
Center distance, in. 1.838 ± 0.007 2.475 ± 0.007

Accuracy and Inspection Parameters
Accuracy grade per AGMA 2000-A88 Q7A Q7A Q7A
Run-out tolerance, in. 0.0034 0.0027 0.0037
Pitch variation, in. ±0.0011 ±0.0009 ±0.0011
Profile tolerance, in. 0.0013 0.0011 0.0014
Lead tolerance, in. 0.0006 0.0006 0.0006
Tooth-to-tooth composite error, in. 0.0021 0.0025 0.0020
Total composite error, in. 0.0054 0.0053 0.0058
Pin diameter, in. 0.1800 0.1800 0.1800
Measurement over balls, in. 2.859/2.867 1.264/1.271 4.141/4.149

Tolerance Analysis Results
Normal operating drive pressure angle, ° 24.66°/25.33° 24.74°/25.25°
Contact ratio 1.15/1.39 1.15/1.40
Operating normal backlash, in. 0.0021/0.0250 0.0015/0.0260
Operating radial clearance, in. 0.018/0.048 0.020/0.050 0.018/0.054

continued
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FIGURE 11.23
(See color insert.) Seven-tooth pinion molding cavity. (Copyright © Kleiss Gears, Inc., Grantsburg, 
Wisconsin.)

TABLE 11.7 (continued)

Gear Geometry Data

Gear Drive 19:7 Ratio 7:28 Ratio

Gear Driving Driven Driving Driven

Stress Analysis Results
RPM 88.4 240 60
Gear efficiency, % 80.1 80.1
Torque, in.-lb 113.2 33.4 107
Bending stress, psi 1743 1685 1712
Gear material Zytel® 101L BKB080
Gearbox housing gear material 30% glass fiber-reinforced 

Zytel 70G30HSLR BK099
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